收藏 分销(赏)

【2020秋备课】高中数学教案新人教A版必修1-3.1.1-方程的根与函数的零点.docx

上传人:精**** 文档编号:3812085 上传时间:2024-07-20 格式:DOCX 页数:7 大小:378.71KB
下载 相关 举报
【2020秋备课】高中数学教案新人教A版必修1-3.1.1-方程的根与函数的零点.docx_第1页
第1页 / 共7页
【2020秋备课】高中数学教案新人教A版必修1-3.1.1-方程的根与函数的零点.docx_第2页
第2页 / 共7页
【2020秋备课】高中数学教案新人教A版必修1-3.1.1-方程的根与函数的零点.docx_第3页
第3页 / 共7页
【2020秋备课】高中数学教案新人教A版必修1-3.1.1-方程的根与函数的零点.docx_第4页
第4页 / 共7页
【2020秋备课】高中数学教案新人教A版必修1-3.1.1-方程的根与函数的零点.docx_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、3.1.1 方程的根与函数的零点 教学分析函数作为高中的重点学问有着广泛应用,与其他数学内容有着有机联系.课本选取探究具体的一元二次方程的根与其对应的二次函数的图象与x轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让同学从生疏的环境中发觉新学问,使新学问与原有学问形成联系.本节设计特点是由特殊到一般,由易到难,这符合同学的认知规律;本节体现的数学思想是:“数形结合”思想和“转化”思想.本节充分体现了函数图象和性质的应用.因此,把握课本要从三个方面入手:新旧学问的联系,同学认知规律,数学思想方法.另外,本节也是传统数学方法与现代多媒体完善结合的产物.三维目标1.让同学明确“方程的根”与“

2、函数的零点”的亲热联系,学会结合函数图象性质推断方程根的个数,学会用多种方法求方程的根和函数的零点.2.通过本节学习让同学把握“由特殊到一般”的认知规律,在今后学习中利用这一规律探究更多的未知世界.3.通过本节学习不仅让同学学会数学学问和认知规律,还要让同学充分体验“数学语言”的严谨性,“数学思想方法”的科学性,体会这些给他们带来的欢快.重点难点依据二次函数图象与x轴的交点的个数推断一元二次方程的根的个数;函数零点的概念.课时支配2课时教学过程第1课时 方程的根与函数的零点导入新课思路1.(情景导入)据新华社体育记者报道:昨晚足球竞赛跌宕起伏,球迷经受了大喜到大悲,再到大喜的过程(领先则喜,落

3、后即悲).请问:整场足球竞赛毁灭几次“比分相同”的时段?同学思考或争辩回答:三次:(1)开场;(2)由领先到落后必经过“比分相同”时段;(3)由落后到领先必经过“平分”时段.老师点拨:足球竞赛有“落后”“领先”“比分相同”,函数值有“负”“正”“零”,函数图象与足球竞赛一样跌宕起伏.由此导入课题,为后面学习埋好伏笔.思路2.(事例导入)(多媒体动画演示)一枚炮弹从地面放射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,问炮弹经过多少秒回到地面?炮弹回到地面即高度h=0,求方程20t-5t2=0的根,得t=4秒.如图3-1-1-1.图3-1-1-1思路3.(直接导入)老师直接点出课题:

4、上一章我们争辩函数的图象性质,这一节我们争辩函数的应用,方程的根与函数的零点.推动新课新知探究提出问题求方程x2-2x-3=0的根,画函数y=x2-2x-3的图象.求方程x2-2x+1=0的根,画函数y=x2-2x+1的图象.求方程x2-2x+3=0的根,画函数y=x2-2x+3的图象.观看函数的图象发觉:方程的根与函数的图象和x轴交点的横坐标有什么关系?如何推断一元二次方程根的个数,如何推断二次函数图象与x轴交点的个数,它们之间有什么关系?归纳函数零点的概念.怎样推断函数是否有零点?函数的图象不易画出,又不能求相应方程的根时,怎样推断函数是否有零点?活动:先让同学思考或争辩后再回答,经老师提

5、示、点拨,对回答正确的同学准时表扬,对回答不精确的同学提示引导考虑问题的思路:问题:先求方程的两个根,找出抛物线的顶点,画出二次函数的图象(图3-1-1-2).问题:方程有一个根,说明抛物线的顶点在x轴上(图3-1-1-3).问题:方程没有实数根,抛物线与x轴没有交点,找出抛物线的顶点是画二次函数图象的关键(图3-1-1-4).问题:方程的根与函数的图象和x轴交点的横坐标都是实数.问题:对于其他函数这个结论正确吗?问题:函数的零点是一个实数.问题:可以利用“转化思想”.问题:足球竞赛中从落后到领先是否确定经过“平分”?由此能否找出推断函数是否有零点的方法?函数图象穿过x轴则有零点,怎样用数学语

6、言描述呢?争辩结果:方程的两个实数根为-1,3.方程的实数根为1.方程没有实数根.方程的根就是函数的图象与x轴交点的横坐标.一元二次方程根的个数,就是二次函数图象与x轴交点的个数,可以用判别式来判定一元二次方程根的个数.a.当0时,一元二次方程有两个不等的实根x1、x2,相应的二次函数的图象与x轴有两个交点(x1,0)、(x2,0);b.当=0时,一元二次方程有两个相等的实根x1=x2,相应的二次函数的图象与x轴有唯一的交点(x1,0);c.当0时,一元二次方程没有实根,相应的二次函数的图象与x轴没有交点.一般地,对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方

7、程f(x)=0有实根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.观看二次函数f(x)=x2-2x-3的图象,我们发觉函数f(x)=x2-2x-3在区间-2,1上有零点.计算f(-2)与f(1)的乘积,发觉这个乘积特点是小于零.在区间2,4同样如此.可以发觉,f(-2)f(1)0,函数y=x2-2x-3在区间(-2,1)内有零点x=-1,它是方程x2-2x-3=0的一个根.同样地,f(2)f(4)4.(2)若函数有三个零点,则a=4.(3)函数有四个零点,则0a0,所以一元二次方程2x2-3x-2=0有两个不相等的实根,所以函数f(x)=2x2-3x-2有两个零点.证法二:由于一元

8、二次方程2x2-3x-2=0可化为(2x+1)(x-2)=0,所以一元二次方程2x2-3x-2=0有两个不相等的实根x1=2,x2=.所以函数f(x)=2x2-3x-2有两个零点.证法三:由于函数f(x)=2x2-3x-2的图象是一条开口向上的抛物线,且顶点在x轴的下方,即f(0)=-20,所以函数f(x)=2x2-3x-2有两个零点.如图3-1-1-6.图3-1-1-7点评:推断函数零点个数可以结合函数的图象.方法:零点函数方程的根两图象交点.数学思想:转化思想和数形结合思想.例2若关于x的方程3x2-5x+a=0的一根在(-2,0)内,另一个根在(1,3)内,求a的取值范围.活动:同学自己

9、思考或争辩,再写出(最好用实物投影仪呈现写的正确的答案).老师在同学中巡察其他同学的解答,发觉问题准时订正,并准时评价.假如用求根公式与判别式来做,运算量很大,能否将问题转化?借助二次函数的图象,从图象中抽出与方程的根有关的关系式,使得问题解答大大简化.引导同学画出函数的图象观看分析.解:设f(x)=3x2-5x+a,则f(x)为开口向上的抛物线,如图3-1-1-8:图3-1-1-8由于f(x)=0的两根分别在区间(-2,0)、(1,3)内,所以即故所求a的取值范围是-12a0.变式训练关于x的方程x2-ax+a2-7=0的两个根一个大于2,另一个小于2,求实数a的取值范围.解:设f(x)=x

10、2-ax+a2-7,图象为开口向上的抛物线(如图3-1-1-9).由于方程x2-ax+a2-7=0的两个根一个大于2,另一个小于2,所以函数f(x)=x2-ax+a2-7的零点一个大于2,另一个小于2.即函数f(x)=x2-ax+a2-7的图象与x轴的两个交点在点(2,0)的两侧.只需f(2)0,即4-2a+a2-70,所以-1a3.图3-1-1-9思路2例1若方程2ax2-x-1=0在(0,1)内有解,求实数a的取值范围.活动:同学先思考或争辩,再回答.老师依据实际,可以提示引导:有解包括有一解和有两解,要分类争辩.用一般解法当然可以,若结合函数图象观看分析,可以找到捷径.有两种状况:a.a

11、=0;b.a0,0.解:令f(x)=2ax2-x-1,(1)当方程2ax2-x-1=0在(0,1)内恰有一个解时,f(0)f(1)0或a0且=0,由f(0)f(1)0,得(-1)(2a-2)1.由=0,得1+8a=0,a=方程为x2-x-1=0,即x=-2(0,1)(舍去).综上可得a1.(2)当方程2ax2-x-1=0在(0,1)内有两个解时,则或简洁解得实数a不存在.综合(1)(2),知a1.变式训练若方程ax2+3x+4a=0的根都小于1,求实数a的取值范围.解:(1)当a=0时,x=0满足题意.(2)当a0时,设f(x)=ax2+3x+4a.方法一:若方程ax2+3x+4a=0的根都小

12、于1,则0a.综上(1)(2),得0a.方法二:若方程ax2+3x+4a=0的根都小于1,则解得00),方程f(x)-x=0的两个根为x1、x2,满足0x1x2.(1)当x(0,x1)时,求证:xf(x)x1;(2)设函数f(x)的图象关于直线x=x0对称,求证:x0.活动:依据方程与函数关系,同学先思考或争辩后再回答,老师点拨、提示并准时评价同学.由于方程f(x)-x=0的两个根为x1、x2,可考虑把f(x)-x设为双根式,然后推断其符号,再考虑二次函数的双根与二次函数对称轴的关系.证明:(1)x1、x2是方程f(x)-x=0的两个根,且0x1x20,即f(x)-x0.又f(x)-x=a(x

13、1-x)(x2-x)a(x1-x)=x1-x,即f(x)-xx1-x,故0f(x)-xx1-x,即xf(x)x1.(2)f(x)-x=ax2+(b-1)x+c,且f(x)-x=0的两个根为x1、x2,二次函数f(x)-x的对称轴为x=.=.又由已知,得x0=,=x0+.又x20.故=x0+x0,即x0.变式训练1.已知二次函数f(x)满足f(3-x)=f(3+x),且其两零点分别为x1、x2,求x1+x2.解:对任意x都有f(3-x)=f(3+x),函数f(x)的图象上有两点(3-x,y)、(3+x,y)关于x=3对称.二次函数f(x)的对称轴为x=3.x1、x2为二次函数f(x)的两个零点,

14、x1+x2=6.2.若函数f(x)满足f(3-x)=f(3+x),且函数f(x)有6个零点,求全部零点的和.解:同理函数f(x)的对称轴为x=3,3(x1+x2)=18.点评:二次函数的双根与二次函数解析式的关系是:若二次项系数为a,两个根为x1、x2,则二次函数解析式为f(x)=a(x-x1)(x-x2).二次函数的双根与二次函数对称轴的关系是:二次函数f(x)的对称轴为x=.总之:二次函数的双根是联系函数与方程的桥梁和纽带,应认真体会、精确把握.知能训练争辩函数y=ex+4x-4的零点的个数.活动:鼓舞同学说出自己的见解,并说明理由.函数零点问题是函数的重要应用,离不开函数的图象和性质.(

15、1)利用f(a)f(b)0及函数的单调性.(2)作出y=ex和y=4-4x的图象,把函数y=ex+4x-4的零点的个数转化为方程ex=4-4x根的个数,再转化为上述两函数图象交点的个数.解:(方法一)利用计算机作出x,f(x)的对应值表:x01f(x)-32.71828由表和图可知,f(0)0,则f(0)f(1)0,这说明f(x)在区间(0,1)内有零点,由于函数在定义域(-,+)内是增函数,所以它仅有一个零点.(方法二)作出y=ex和y=4-4x的图象(图3-1-1-10),即可直观地看出零点的个数为1.图3-1-1-10总结点评:争辩函数零点个数问题是函数的重要应用,由于函数与方程的特殊关

16、系,所以这个问题常用的方法是:(1)解方程;(2)画图象;(3)利用f(a)f(b)0,得m4.综上,要使P和Q同时成立,只需解得实数m的取值范围是(4,8.2.假如函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且f(a)f(b)0,那么函数y=f(x)在区间(a,b)内是否有零点?可能有几个零点?活动:同学先思考或争辩,再回答.利用函数图象进行探究分析:有没有零点?零点的个数是奇数还是偶数?解析:零点个数可以是任意自然数.下面争辩在区间-3,3上函数零点个数,(1)可能没有零点如图(图3-1-1-11).图3-1-1-11 图3-1-1-12(2)可能有一个零点如图(图3-1-

17、1-12).(3)可能有两个零点如图(图3-1-1-13).图3-1-1-13 图3-1-1-14(4)可能有三个零点如图(图3-1-1-14).(5)可能有n(nN*)个零点,图略.点评:在区间-3,3上函数零点个数可以是任意自然数.借助计算机可以验证同学们的推断,激发同学学习爱好.课堂小结本节学习了:零点的概念;零点的推断方法;利用函数的单调性证明零点的个数;零点的应用.学习方法:由特殊到一般的方法.数学思想:转化思想、数形结合思想.作业课本P88练习1.设计感想本节以事例导入,该事例是同学很感爱好的话题,发人深思而紧贴本节主题,为后面讲解埋好了伏笔.由于二次函数、二次方程永久是高考的重点

18、,所以本节结合二次函数的图象性质详实争辩了有关二次函数的零点和二次方程的根的问题.本节不仅选用了一些传统经典的题目进行方法总结,还搜集了一些最新的高三模拟题加以充实提高.另外,本节目的明确、层次分明、难度适中,对同学可能产生爱好的问题进行了拓展,期望大家宠爱.3.1.1 方程的根与函数的零点 (第2课时)提出问题已知函数f(x)=mx2+mx+1没有零点,求实数m的范围.证明函数f(x)=x2+6x+10没有零点.已知函数f(x)=2mx2-x+m有一个零点,求实数m的范围.已知函数f(x)=2(m+1)x2+4mx+2m-1有两个零点,求实数m的范围.活动:先让同学动手做题后再回答,经老师提

19、示、点拨,对回答正确的同学准时表扬,对回答不精确的同学提示引导考虑问题的思路.争辩结果:由于=m2-4m0或m=0,0m4.由于=36-40=-40且2(m+1)0,m1且m-1.导入新课思路1.(情景导入)歌中唱到:再“穿过”一条苦恼的河流明天就会到达,同学们知道生活中“穿过”的含义.请同学们思考用数学语言是怎样描述函数图象“穿过”x轴的?同学思考或争辩回答:利用函数值的符号,即f(a)f(b)0.思路2.(直接导入)老师直接点出课题:这一节我们将进一步巩固有关方程的根与函数的零点的学问,总结求方程的根与函数的零点的方法,探寻其中的规律.推动新课新知探究提出问题假如函数相应的方程不易求根,其

20、图象也不易画出,怎样争辩其零点?用数学语言总结推断零点存在性定理,并找出好的理解记忆方法.活动:先让同学动手做题后再回答,经老师提示、点拨,对回答正确的同学准时表扬,对回答不精确的同学提示引导考虑问题的思路.争辩结果:在闭区间a,b上,若f(a)f(b)0,y=f(x)连续,则(a,b)内有零点.假如函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且f(a)f(b)0,那么函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.我们把它叫做零点存在性定理.由于闭区间端点符号相反的连续函数在开区间内有零点,可以简记为:“闭端反

21、连(脸),开内零点.”应用示例思路1例1求函数f(x)=lnx+2x-6的零点的个数.活动:依据零点概念,同学先思考或争辩后再回答,老师点拨、提示:由于方程lnx+2x-6=0的根不易求得,函数f(x)=lnx+2x-6的图象不易画出,假如不借助计算机,怎么推断零点个数?可以利用f(a)f(b)0,及函数单调性.解:利用计算机作出x,f(x)的对应值表:x123456789f(x)-4-1.30691.09863.38635.60947.79189.945012.079414.1972由表和图3-1-1-15可知,f(2)0,则f(2)f(3)0,这说明f(x)在区间(2,3)内有零点.由于函

22、数在定义域(0,+)内是增函数,所以它仅有一个零点.图3-1-1-15 图3-1-1-16变式训练证明函数f(x)=lgx+x-8有且仅有一个零点.证明:如图3-1-1-16,由于f(1)=-7,f(10)=3,f(1)f(10)0.函数f(x)=lgx+x-8有一个零点.y=lgx为增函数,y=x-8是增函数,函数f(x)=lgx+x-8是增函数.函数f(x)=lgx+x-8有且仅有一个零点.点评:推断零点的个数:(1)利用零点存在性定理推断存在性;(2)利用单调性证明唯一性.例2已知函数f(x)=3x+,(1)推断函数零点的个数.(2)找出零点所在区间.解:(1)设g(x)=3x,h(x)

23、=,作出它们的图象(图3-1-1-17),两函数图象交点的个数即为f(x)零点的个数.所以两函数图象有且仅有一个交点,即函数f(x)=3x+有且仅有一个零点.图3-1-1-17(2)由于f(0)=-1,f(1)=2.5,所以零点x(0,1).变式训练证明函数f(x)=2x+4x-4有且仅有一个零点.证明:利用计算机作出x,f(x)的对应值表:x-101234567f(x)-7.5-32816284884172图3-1-1-18由表和图3-1-1-18可知,f(0)0,则f(0)f(1)0,这说明f(x)在区间内有零点.下面证明函数在定义域(-,+)内是增函数.设x1,x2(-,+),且x1x2

24、,f(x1)-f(x2)=2+4x1-4-(2+4x2-4)=2-2+4(x1-x2)=2(2-x2-1)+4(x1-x2).x1x2,x1-x20,2-x2-10.f(x1)-f(x2)0.函数在定义域(-,+)内是增函数.则函数f(x)=2x+4x-4有且仅有一个零点.思路2例1证明函数y=2|x|-2恰有两个零点.图3-1-1-19证明:如图3-1-1-19,f(-2)=2,f(0)=-1,f(2)=2,f(-2)f(0)0,f(0)f(2)0.函数y=2|x|-2有两个零点.要证恰有两个零点,需证函数y=2|x|-2在(0,+)上为单调的,函数y=2|x|-2在(-,0)上为单调的.在

25、(0,+)上,函数y=2|x|-2可化为y=2x-1,下面证明f(x)=2x-1在(0,+)上为增函数.证明:设x1,x2为(0,+)上任意两实数,且0x1x2,f(x1)-f(x2)=2-2-(2-2)=2-2=2 (2-x2-1),0x1x2,x1-x20,2-x20,2-x2-10.2 (2-x2-1)0.f(x1)-f(x2)0.f(x1)f(x2).函数y=2|x|-2在(0,+)上为增函数.同理可证函数y=2|x|-2在(-,0)上为减函数.函数y=2|x|-2恰有两个零点.变式训练证明函数f(x)=x+-3在(0,+)上恰有两个零点.证明:f()=,f(1)=-1,f(3)=,f

26、()f(1)0,f(1)f(3)0.函数f(x)=x+-3在(0,+)上有两个零点.要证恰有两个零点,需证函数f(x)=x+-3在(0,1)上为单调的,函数f(x)=x+-3在(1,+)上为单调的.证明:设x1,x2为(0,1)上的任意两实数,且x1x2.f(x1)-f(x2)=x1+-3-(x2+-3)=(x1-x2)+()=(x1-x2)+=(x1-x2)(),0x1x21,x1-x20,0.f(x1)-f(x2)0.函数f(x)=x+-3在(0,1)上为减函数.同理函数f(x)=x+-3在(1,+)上为增函数.函数f(x)=x+-3在(0,+)上恰有两个零点(如图3-1-1-20).图3

27、-1-1-20点评:证明函数零点的个数是一个难点和重点,对于基本初等函数可以借助函数图象和方程来争辩.对于较简洁的函数证明函数恰有n个零点,先找出有n个,再利用单调性证明仅有n个.例2已知函数f(x)=ax3+bx2+cx+d有三个零点,分别是0、1、2,如图3-1-1-21,求证:b0.图3-1-1-21活动:依据零点概念,同学先思考或争辩后再回答,老师点拨、提示:方法一:把零点代入,用a、c表示b.方法二:用参数a表示函数.证法一:由于f(0)=f(1)=f(2)=0,所以d=0,a+b+c=0,4a+2b+c=0.所以a=,c=b.所以f(x)=x(x2-3x+2)=x(x-1)(x-2

28、).当x0时,f(x)0,所以b2时,f(x)0,所以a0.比较同次项系数,得b=-3a.所以b0.变式训练函数y=ax2-2bx的一个零点为1,求函数y=bx2-ax的零点.答案:函数y=bx2-ax的零点为0、2.点评:假如题目给出函数的零点,这涉及到零点的应用问题.(1)可以考虑把零点代入用待定系数法解决问题.(2)利用零点的特殊性把解析式的设法简洁化.知能训练1.函数f(x)=lgx-2x2+3的零点确定位于下列哪个区间?( )A.(4,5) B.(1,2) C.(2,3) D.(3,4)2.若函数f(x)=2mx+4在-2,1上存在零点,则实数m的取值范围是( )A.4 B.(-,-

29、21,+)C.-1,2 D.(-2,1)3.已知函数f(x)=3x56x1,有如下对应值表:x-2-1.5012f(x)10944.171-8-107函数yf(x)在哪几个区间内必有零点?为什么?答案:1.B 2.B 3.(0,1),由于f(0)f(1)0.点评:结合函数图象性质推断函数零点所在区间是本节重点,应切实把握.拓展提升方程lnx+2x+3=0根的个数及所在的区间,能否进一步缩小根所在范围?分析:利用函数图象(图3-1-1-22)进行探究分析.图3-1-1-22解:(1)观看函数的图象计算f(1)、f(2),知f(x)=lnx+2x+3有零点.(2)通过证明函数的单调性,知f(x)=lnx+2x+3有一个零点x(1,2).请同学们自己探究能否进一步缩小根所在范围?借助计算机可以验证同学们推断,激发同学学习爱好.课堂小结(1)学会由函数解析式争辩零点个数,证明零点个数.(2)思想方法:函数方程思想、数形结合思想、分类争辩思想.作业课本P88练习2.设计感想如何用数学语言描述“穿过”是本节的关键,本节从导入开头让同学体会数学语言与文字语言的区分,并进一步让同学学会应用数学语言描述零点存在性定理.本节多次用计算机作图来感知函数零点,在零点证明题中又经常用到函数的单调性进行严格证明,所以本节是数与形的完善统一.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服