收藏 分销(赏)

【创新设计】2022届-数学一轮(文科)-人教B版-课时作业-第八章-立体几何-第4讲-.docx

上传人:w****g 文档编号:3811482 上传时间:2024-07-19 格式:DOCX 页数:5 大小:298.84KB 下载积分:6 金币
下载 相关 举报
【创新设计】2022届-数学一轮(文科)-人教B版-课时作业-第八章-立体几何-第4讲-.docx_第1页
第1页 / 共5页
【创新设计】2022届-数学一轮(文科)-人教B版-课时作业-第八章-立体几何-第4讲-.docx_第2页
第2页 / 共5页


点击查看更多>>
资源描述
第4讲 空间中的垂直关系 基础巩固题组 (建议用时:40分钟) 一、选择题 1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不肯定成立的是 (  ) A.AB∥m  B.AC⊥m   C.AB∥β  D.AC⊥β 解析 如图所示, AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不肯定成立,故选D. 答案 D 2.(2021·抚顺模拟)设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是 (  ) A.过a肯定存在平面β,使得β∥α B.过a肯定存在平面β,使得β⊥α C.在平面α内肯定不存在直线b,使得a⊥b D.在平面α内肯定不存在直线b,使得a∥b 解析 当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必定垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误. 答案 B 3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么 (  ) A.PA=PB>PC B.PA=PB<PC C.PA=PB=PC D.PA≠PB≠PC 解析 ∵M为AB的中点,△ACB为直角三角形, ∴BM=AM=CM,又PM⊥平面ABC, ∴Rt△PMB≌Rt△PMA≌Rt△PMC, 故PA=PB=PC. 答案 C 4.(2021·青岛质量检测)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是 (  ) A.a⊥α,b∥β,α⊥β  B.a⊥α,b⊥β,α∥β C.a⊂α,b⊥β,α∥β  D.a⊂α,b∥β,α⊥β 解析 A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D中,两直线可以平行,相交或异面,故不正确. 答案 C 5. (2021·深圳调研)如图,在四周体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是 (  ) A.平面ABC⊥平面ABD B.平面ABD⊥平面BDC C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE 解析 由于AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.由于AC⊂平面ABC,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,所以选C. 答案 C 二、填空题 6.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论: ①AF⊥PB;②EF⊥PB;③AF⊥BC; ④AE⊥平面PBC. 其中正确结论的序号是________. 解析 由题意知PA⊥平面ABC,∴PA⊥BC. 又AC⊥BC,且PA∩AC=A, ∴BC⊥平面PAC,∴BC⊥AF. ∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A, ∴PB⊥平面AEF,∴PB⊥EF.故①②③正确. 答案 ①②③ 7.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可). 解析 ∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD. 答案 DM⊥PC(或BM⊥PC) 8.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3. 解析 连接AC交BD于O,在长方体中, ∵AB=AD=3,∴BD=3 且AC⊥BD. 又∵BB1⊥底面ABCD, ∴BB1⊥AC. 又DB∩BB1=B, ∴AC⊥平面BB1D1D, ∴AO为四棱锥A-BB1D1D的高且AO=BD=. ∵S矩形BB1D1D=BD×BB1=3×2=6, ∴VA-BB1D1D=S矩形BB1D1D·AO =×6×=6(cm3). 答案 6 三、解答题 9. (2022·大连测试)如图,在直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是棱AA1的中点,CD⊥B1D. (1)证明:CD⊥B1C1; (2)平面CDB1分此棱柱为两部分,求这两部分体积的比. (1)证明 由题设知,三棱柱的侧面为矩形, 由于D为AA1的中点,故DC=DC1, 又AA1=2A1C1,可得DC+DC2=CC, 所以CD⊥DC1,而CD⊥B1D,B1D∩C1D=D, 所以CD⊥平面B1C1D, 由于B1C1⊂平面B1C1D,所以CD⊥B1C1. (2)解 由(1)知B1C1⊥CD,且B1C1⊥C1C,则B1C1⊥平面ACC1A1, 设V1是平面CDB1上方部分的体积,V2是平面CDB1下方部分的体积, 则V1=VB1-CDA1C1=×S梯形CDA1C1×B1C1 =×B1C=B1C. V总=VABC-A1B1C1=AC×BC×CC1=B1C, V2=V总-V1=B1C=V1, 故=1∶1. 10.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证: (1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. 证明 (1)由于平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD. (2)由于AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形. 所以BE∥AD. 又由于BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD. (3)由于AB⊥AD,而且ABED为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD. 所以PA⊥CD. 所以CD⊥平面PAD. 从而CD⊥PD. 又E,F分别是CD和PC的中点, 所以PD∥EF. 故CD⊥EF,CD⊂平面PCD,由EF,BE⊂平面BEF,且EF∩BE=E. 所以CD⊥平面BEF. 所以平面BEF⊥平面PCD. 力量提升题组 (建议用时:25分钟) 11.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在 (  ) A.直线AB上  B.直线BC上 C.直线AC上  D.△ABC内部 解析 由BC1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上. 答案 A 12.(2022·衡水中学模拟)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错误的命题是 (  ) A.点H是△A1BD的垂心 B.AH垂直于平面CB1D1 C.AH延长线经过点C1 D.直线CB1和CD1所成角为45° 解析 对于A,由于AA1=AB=AD,所以点A在平面A1BD上的射影必到点A1,B,D的距离相等,即点H是△A1BD的外心,而A1B=A1D=BD,故点H是△A1BD的垂心,命题A是真命题;对于B,由于B1D1∥BD,CD1∥A1B,故平面A1BD∥平面CB1D1,而AH⊥平面A1BD,从而AH⊥平面CB1D1,命题B是真命题;对于C,由于AH⊥平面CB1D1,因此AH的延长线经过点C1,命题C是真命题;对于D,由于△B1CD1为正三角形,所以∠B1CD= 60°,故直线CB1和CD1所成角为60°,因此命题D是假命题. 答案 D 13.(2021·河南师大附中二模)如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°. 其中正确的有________(把全部正确的序号都填上). 解析 由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE, 又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确; 又平面PAD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确. 答案 ①④ 14.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点. (1)求证:B1D1∥平面A1BD; (2)求证:MD⊥AC; (3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D. (1)证明 由直四棱柱,得BB1∥DD1, 又∵BB1=DD1,∴BB1D1D是平行四边形, ∴B1D1∥BD. 而BD⊂平面A1BD,B1D1⊄平面A1BD, ∴B1D1∥平面A1BD. (2)证明 ∵BB1⊥平面ABCD,AC⊂平面ABCD, ∴BB1⊥AC. 又∵BD⊥AC,且BD∩BB1=B, ∴AC⊥平面BB1D. 而MD⊂平面BB1D,∴MD⊥AC. (3)解 当点M为棱BB1的中点时,平面 DMC1⊥平面CC1D1D.理由如下: 取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示. ∵N是DC的中点,BD=BC, ∴BN⊥DC.又∵DC是平面ABCD与平面DCC1D1的交线, 而平面ABCD⊥平面DCC1D1, ∴BN⊥平面DCC1D1. 又可证得O是NN1的中点, ∴BM∥ON且BM=ON, 即BMON是平行四边形. ∴BN∥OM.∴OM⊥平面CC1D1D. ∵OM⊂平面DMC1, ∴平面DMC1⊥平面CC1D1D.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服