1、 圆的方程(学案)B一、学问梳理1.圆的方程(1)圆的标准方程圆心为(a,b),半径为r的圆的标准方程为(xa)2+(yb)2=r2.说明:方程中有三个参量a、b、r,因此三个独立条件可以确定一个圆.(2)圆的一般方程二次方程x2+y2+Dx+Ey+F=0.(*)将(*)式配方得(x+)2+(y+)2=.当D2+E24F0时,方程(*)表示圆心(,),半径r=的圆,把方程x2+y2+Dx+Ey+F=0(D2+E24F0)叫做圆的一般方程.说明:(1)圆的一般方程体现了圆方程的代数特点:(Ax2+By2+Cxy+Dx+Ey+F=0)a.x2、y2项系数相等且不为零.b.没有xy项.(2)当D2+
2、E24F=0时,方程(*)表示点(,),当D2+E24F0时,方程(*)不表示任何图形.(3)据条件列出关于D、E、F的三元一次方程组,可确定圆的一般方程.(3)圆的参数方程(4-4选讲内容)圆心在O(0,0),半径为r的圆的参数方程为(为参数). x=rcos,y=rsin 圆心在O1(a,b),半径为r的圆的参数方程为(为参数). x=a+rcos,y=b+rsin说明:在中消去得x2+y2=r2,在中消去得(xa)2+(yb)2=r2,把这两个方程相对于它们各自的参数方程又叫做一般方程.2.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件若上述二元二次方程表示圆,则
3、有A=C0,B=0,这仅是二元二次方程表示圆的必要条件,不充分.在A=C0,B=0时,二元二次方程化为x2+y2+x+y+=0,仅当()2+()240,即D2+E24AF0时表示圆.故Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是:A=C0,B=0,D2+E24AF0.二、题型探究题型探究一圆的标准方程1.方程x2+y22(t+3)x+2(14t2)y+16t4+9=0(tR)表示圆方程,则t的取值范围是A.1t B.1t C.t1 D.1t0),下列结论错误的是A.当a2+b2=r2时,圆必过原点 B.当a=r时,圆与y轴相切C.当b=r时,圆与x轴相切 D.当b0)为两定点,
4、动点P到A点的距离与到B点的距离的比为定值a(a0),求P点的轨迹.【例2】 一圆与y轴相切,圆心在直线x3y=0上,且直线y=x截圆所得弦长为2,求此圆的方程.【例3】 已知O的半径为3,直线l与O相切,一动圆与l相切,并与O相交的公共弦恰为O的直径,求动圆圆心的轨迹方程.三、方法提升:1.不论圆的标准方程还是一般方程,都有三个字母(a、b、r或D、E、F)的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a、b、r(或D、E、F)的三个方程组成的方程组,解之得到待定字母系数的值.2.求圆的方程的一般步骤:(1)选用圆的方程两种形式中的一种(若知圆上三个点的坐标,通常选用一般方程;
5、若给出圆心的特殊位置或圆心与两坐标间的关系,通常选用标准方程);(2)依据所给条件,列出关于D、E、F或a、b、r的方程组;(3)解方程组,求出D、E、F或a、b、r的值,并把它们代入所设的方程中,得到所求圆的方程.3.解析几何中与圆有关的问题,应充分运用圆的几何性质挂念解题.四、反思感悟1.在二元二次方程中x2和y2的系数相等并且没有x、y项只是表示圆的必要条件而不是充分条件.2.假如问题中给出了圆心两坐标之间的关系或圆心的特殊位置时,一般用标准方程.假如给出圆上的三个点的坐标,一般用一般方程.3.在一般方程中,当D2+E24F=0时,方程表示一个点(,),当D2+E24F0时,无轨迹.4.
6、在解决与圆有关的问题时,要充分利用圆的特殊几何性质,这样会使问题简洁化.5.数形结合、分类争辩、函数与方程的思想在解决圆的有关问题时经常运用,应娴熟把握.五、课时作业:1.方程x2y2DxEyF0(D2E24F0)表示的曲线关于x+y=0成轴对称图形,则A.D+E=0B. B.D+F=0C.E+F=0 D. D+E+F=02.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有A.1条 B.2条 C.3条 D.4条3.圆x2+y2+x6y+3=0上两点P、Q关于直线kxy+4=0对称,则k=_.4.设P为圆x2+y2=1上的动点,则点P到直线3x4y10=0的 距离的最
7、小值为_.5.设O为坐标原点,曲线x2+y2+2x6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足=0.(1)求m的值;(2)求直线PQ的方程.6.已知实数x、y满足x2+y2+2x2y=0,求x+y的最小值.培育力气7.已知实数x、y满足方程x2+y24x+1=0.求(1)的最大值和最小值;(2)yx的最小值;(3)x2+y2的最大值和最小值.8.(文)求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并推断点M1(2,3),M2(2,4)与圆的位置关系.(理)已知动圆M:x2+y22mx2ny+m21=0与圆N:x2+y2+2x+2y2=0交于A、
8、B两点,且这两点平分圆N的圆周.(1)求动圆M的圆心的轨迹方程;(2)求半径最小时圆M的方程.探究创新9.(2021年黄冈市调研考试题)如图,在平面斜坐标系xOy中,xOy=60,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).(1)若P点斜坐标为(2,2),求P到O的距离|PO|;(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.拓展题例10、 圆x2+y2=1内有确定点A(,0),圆上有两点P、Q,若PAQ=90,求过点P和Q的两条切线的交点M的轨迹方程.11、 如图,过原点的动直线交圆x2+(y1)2=1于点Q,在直线OQ上取点P,使P到直线y=2的距离等于|PQ|,求动直线绕原点转一周时P点的轨迹方程.