资源描述
一、单项选择题
1.关于动能的概念及公式W=Ek2-Ek1的说法中正确的是( )
A.若物体速度在变化,则动能确定在变化
B.速度大的物体,动能确定大
C.W=Ek2-Ek1表示功可以变成能
D.动能的变化可以用合力做的功来量度
解析:选D.速度是矢量,而动能是标量,若物体速度只转变方向,不转变大小,则动能不变,A错误;由Ek=mv2知B错误;动能定理W=Ek2-Ek1表示动能的变化可用合力做的功量度,但功和能是两个不同的概念,有着本质的区分,故C错误,D正确.
2.(2022·泉州高一检测)关于做功和物体动能变化的关系,正确的是 ( )
A.只要动力对物体做功,物体的动能就增加
B.只要物体克服阻力做功,它的动能就削减
C.外力对物体做功的代数和等于物体的末动能与初动能之差
D.动力和阻力都对物体做功,物体的动能确定变化
解析:选C.物体动能的变化量取决于合外力对物体做的总功,有动力对物体做功或物体克服阻力做功时,合外力做的总功的正负不能确定,所以动能的增减无法确定.综上,只有选项C正确.
3.(2022·北京西城区高一检测)一个同学用100 N的力,将静止在球场上质量为1 kg的球,以10 m/s的速度踢出20 m远,则该同学对球做的功为( )
A.50 J B.100 J
C.1 000 J D.2 000 J
解析:选A.对球,从静止到速度v=10 m/s,设同学做功W,应用动能定理W=mv2/2=50 J,A正确.
4.质量不等,但具有相同初动能的两个物体,在动摩擦因数相同的地面上滑行,直到停止,则 ( )
A.质量大的物体滑行距离大
B.质量小的物体滑行距离大
C.质量大的物体克服摩擦力做功多
D.质量小的物体克服摩擦力做功多
解析:选B.对物体,设受到的摩擦力大小为f、与地面间动摩擦因数为μ,应用动能定理有-fs=-μmgs=0-Ek0,可知s=,A错误、B正确;克服摩擦力做功等于动能削减量,均等于Ek0,C、D均错误.
5.(2022·济南高一检测)足球竞赛时,某方获得一次罚点球机会,该方一名运动员将质量为m的足球以速度v0猛地踢出,结果足球以速度v撞在球门高h的门梁上而被弹出.现用g表示当地的重力加速度,则此足球在空中飞往门梁的过程中克服空气阻力所做的功应等于( )
A.mgh+mv2-mv
B.mv2-mv-mgh
C.mv-mv2-mgh
D.mgh+mv-mv2
解析:选C.在足球被踢出后飞往门梁的过程中应用动能定理得:W阻-mgh=mv2-mv,得W阻=mgh+mv2-mv.克服空气阻力做的功为-W阻,故选项C正确.
6.(2022·济南高一检测)如图所示,木块m沿固定的光滑斜面从静止开头下滑,当下降h高度时,重力的瞬时功率是( )
A.mg B.mgcos θ
C.mgsin θ D.mgsin θ
解析:选D.设木块下降高度h时的速率为v,由动能定理得mgh=mv2,所以v=,故此时重力的瞬时功率P=mgvcos=mg sin θ=mgsin θ,D正确.
二、多项选择题
7.一个25 kg的小孩从高度为3 m的滑梯顶端由静止开头滑下,滑到底端时的速度为2 m/s.取g=10 m/s2,关于力对小孩做的功,以下结果正确的是( )
A.合外力做功50 J
B.克服阻力做功700 J
C.重力做功500 J
D.支持力做功50 J
解析:选AB.重力做功WG=mgh=25×10×3 J=750 J,C错误;小孩所受支持力方向垂直于滑梯斜面,与速度方向垂直,故支持力做的功为零,D错误;合外力做的功W合=Ek-0,即W合=mv2=×25×22 J=50 J,选项A正确;由动能定理得WG-W阻=Ek-0,故W阻=mgh-mv2=750 J-50 J=700 J,B正确.
8.如图所示,在外力作用下某质点运动的v t图象为正弦曲线.从图中可以推断( )
A.在0~t1时间内,外力做正功
B.在0~t1时间内,外力的功率渐渐增大
C.在t2时刻,外力的功率最大
D.在t1~t3时间内,外力做的总功为零
解析:选AD.由动能定理可知,在0~t1时间内质点速度越来越大,动能越来越大,外力确定做正功,故A项正确;在t1~t3时间内,动能变化量为零,可以判定外力做的总功为零,故D项正确;由P=Fv知0、t1、t2、t3四个时刻功率为零,故B、C都错误.
☆9.如图所示,竖直平面内有一个半径为R的半圆形轨道OQP,其中Q是半圆形轨道的中点,半圆形轨道与水平轨道OE在O点相切,质量为m的小球沿水平轨道运动,通过O点进入半圆形轨道,恰好能够通过最高点P,然后落到水平轨道上,不计一切摩擦阻力,下列说法正确的是( )
A.小球落地时的动能为2.5mgR
B.小球落地点离O点的距离为2R
C.小球运动到半圆形轨道最高点P时,向心力恰好为零
D.小球到达Q点的速度大小为
解析:选ABD.小球恰好通过P点,mg=m得v0=.依据动能定理mg·2R=mv2-mv得mv2=2.5mgR,A正确.由平抛运动学问得t= ,落地点与O点距离x=v0t=2R,B正确.P处小球重力供应向心力,C错误.从Q到P,由动能定理得-mgR=m·()2-mv得vQ=,D正确.
三、非选择题
10.如图所示,质量m=60 kg的高山滑雪运动员,从A点由静止开头沿滑雪道滑下,从B点水平飞出后又落在与水平面成θ=37°的斜坡上C点.已知A、B两点间的高度差为hAB=25 m,B、C两点间的距离为s=75 m,已知sin 37°=0.6,取g=10 m/s2,求:
(1)运动员从B点水平飞出时的速度大小;
(2)运动员从A点到B点的过程中克服摩擦力做的功.
解析:(1)设由B到C,运动员做平抛运动的时间为t
竖直方向:hBC=ssin 37°=gt2
水平方向:scos 37°=vBt
代入数据,解得vB=20 m/s.
(2)A到B过程,由动能定理有
mghAB+WFf=mv
代入数据,解得WFf=-3 000 J
所以运动员克服摩擦力所做的功为3 000 J.
答案:(1)20 m/s (3)3 000 J
11.(2021·高考天津卷)质量为m=4 kg的小物块静止于水平地面上的A点,现用F=10 N的水平恒力拉动物块一段时间后撤去,物块连续滑动一段位移停在B点,A、B两点相距x=20 m,物块与地面间的动摩擦因数μ=0.2,g取10 m/s2,求:
(1)物块在力F作用过程发生位移x1的大小;
(2)撤去力F后物块连续滑动的时间t.
解析:(1)设物块受到的滑动摩擦力为Ff,则
Ff=μmg
依据动能定理,对物块由A到B整个过程,有
Fx1-Ffx=0
代入数据,解得x1=16 m.
(2)设刚撤去力F时物块的速度为v,此后物块的加速度为a,滑动的位移为x2,则x2=x-x1
由牛顿其次定律得a=
由匀变速直线运动公式得v2=2ax2,x2=vt,
代入数据,解得t=2 s.
答案:(1)16 m (2)2 s
☆12.质量为m的物体以速度v0竖直向上抛出,物体落回地面时,速度大小为v0(设物体在运动中所受空气阻力的大小不变),如图所示,求:
(1)物体在运动过程中所受空气阻力的大小;
(2)求物体以初速度2v0竖直向上抛出时的最大高度;若假设物体在落地碰撞过程中无能量损失,求物体运动的总路程.
解析:(1)设物体到达的最大高度为h,受空气阻力为f,则由动能定理得:
上升阶段:-mgh-fh=0-mv,①
下降阶段:mgh-fh=m2-0,②
由①②两式解得=.
所以空气阻力的大小为f=mg.
(2)设上升的最大高度为h′,则由动能定理得:
-mgh′-fh′=0-m(2v0)2.
将f=mg代入上式,得h′=.
物体从抛出到停止时,设运动的总路程为s,则由动能定理得-fs=0-m(2v0)2,解得s==.
答案:(1)mg (2)
展开阅读全文