收藏 分销(赏)

高中数学解析几何大题精选教学提纲.doc

上传人:快乐****生活 文档编号:3767837 上传时间:2024-07-17 格式:DOC 页数:6 大小:470.50KB
下载 相关 举报
高中数学解析几何大题精选教学提纲.doc_第1页
第1页 / 共6页
高中数学解析几何大题精选教学提纲.doc_第2页
第2页 / 共6页
高中数学解析几何大题精选教学提纲.doc_第3页
第3页 / 共6页
高中数学解析几何大题精选教学提纲.doc_第4页
第4页 / 共6页
高中数学解析几何大题精选教学提纲.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、高中数学解析几何大题精选精品文档解析几何大量精选1.在直角坐标系中,点到点,的距离之和是,点的轨迹是与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和求轨迹的方程;当时,求与的关系,并证明直线过定点【解析】 将代入曲线的方程,整理得,因为直线与曲线交于不同的两点和,所以 设,则, 且,显然,曲线与轴的负半轴交于点,所以,由,得将、代入上式,整理得所以,即或经检验,都符合条件当时,直线的方程为显然,此时直线经过定点点即直线经过点,与题意不符当时,直线的方程为显然,此时直线经过定点点,满足题意综上,与的关系是,且直线经过定点2. 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相

2、切 求椭圆的方程; 设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点; 在的条件下,过点的直线与椭圆交于,两点,求的取值范围【解析】 由题意知直线的斜率存在,设直线的方程为由得 设点,则直线的方程为令,得将,代入整理,得由得,代入整理,得所以直线与轴相交于定点 .设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率,过椭圆右焦点的直线与椭圆交于两点求椭圆的方程;是否存在直线,使得若存在,求出直线的方程;若不存在,说明理由【解析】 由题意知,直线与椭圆必有两个不同交点当直线斜率不存在时,经检验不合题意设存在直线为,且,由,得,所以,故直线的方程

3、为或本题直线的方程也可设为,此时一定存在,不能讨论,且计算时数据更简单.如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长 求的方程; 设与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交与证明:;记的面积分别是问是否存在直线,使得?请说明理由【解析】 由题意知,直线的斜率存在,设为,则直线的方程为由得,设,则是上述方程的两个实根,于是又点的坐标为,所以,故,即设直线的斜率为,则直线的方程为,由,解得或,则点的坐标为又直线的斜率为,同理可得点的坐标为于是由得,解得或,则点的坐标为;又直线的斜率为,同理可得点的坐标于是因此,由题意知,解得或又由点的坐标可知,所以故满足条件的直线存在,且有两条,其方程分别为和. 在直角坐标系中,点到点,的距离之和是,点的轨迹是与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和求轨迹的方程;当时,求与的关系,并证明直线过定点【解析】 将代入曲线的方程,整理得,因为直线与曲线交于不同的两点和,所以 设,则, 且,显然,曲线与轴的负半轴交于点,所以,由,得将、代入上式,整理得所以,即或经检验,都符合条件当时,直线的方程为显然,此时直线经过定点点即直线经过点,与题意不符当时,直线的方程为显然,此时直线经过定点点,满足题意综上,与的关系是,且直线经过定点收集于网络,如有侵权请联系管理员删除

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服