收藏 分销(赏)

2020年人教A版数学理(福建用)课时作业:第八章-第二节直线的交点坐标与距离公式.docx

上传人:丰**** 文档编号:3714639 上传时间:2024-07-15 格式:DOCX 页数:4 大小:163.09KB 下载积分:5 金币
下载 相关 举报
2020年人教A版数学理(福建用)课时作业:第八章-第二节直线的交点坐标与距离公式.docx_第1页
第1页 / 共4页
2020年人教A版数学理(福建用)课时作业:第八章-第二节直线的交点坐标与距离公式.docx_第2页
第2页 / 共4页


点击查看更多>>
资源描述
温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时提升作业(五十一) 一、选择题 1.(2021·郑州模拟)点A(1,1)到直线xcos θ+ysin θ-2=0的距离的最大值是 ( ) (A)2 (B) (C) (D)4 2.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是( ) (A)y=2x-1 (B)y=-2x+1 (C)y=-2x+3 (D)y=2x-3 3.对任意实数a,直线y=ax-3a+2所经过的定点是( ) (A)(2,3) (B)(3,2) (C)(-2,3) (D)(3,-2) 4.若曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为( ) 5.(2021·石家庄模拟)若直线l1:y=kx+k+2与l2:y=-2x+4的交点在第一象限,则实数k的取值范围是( ) 6.已知点A(-3,-4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值等于( ) 7.(2021·福州模拟)设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线方程分别为x=0,y=x,则直线BC的方程为( ) (A)y=2x+5 (B)y=2x+3 (C)y=3x+5 (D) 8.(2021·成都模拟)分别过点A(1,3)和点B(2,4)的直线l1和l2相互平行且有最大距离,则l1的方程是( ) (A)x-y-4=0 (B)x+y-4=0 (C)x=1 (D)y=3 9.若点A(3,5)关于直线l:y=kx的对称点在x轴上,则k是( ) 10.(力气挑战题)若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则线段AB的中点M到原点的距离的最小值为( ) 二、填空题 11.已知坐标平面内两点那么这两点之间距离的最小值是________. 12.已知定点A(1,1),B(3,3),动点P在x轴上,则|PA|+|PB|的最小值是________. 13.(2021·银川模拟)若直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离为________. 14.(2021·重庆模拟)已知0<k<4,直线l1:kx-2y-2k+8=0和直线l2:2x+k2y -4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为________. 三、解答题 15.(力气挑战题)如图,函数的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N. (1)证明:|PM|·|PN|为定值. (2)O为坐标原点,求四边形OMPN面积的最小值. 答案解析 1.【解析】选C.由点到直线的距离公式得=2-sin(θ+),又θ∈R, 【变式备选】点P(-1,3)到直线l:y=k(x-2)的距离的最大值等于( ) (A)2 (B)3 (C) (D) 【解析】选C.直线l:y=k(x-2)的方程可化为kx-y-2k=0,所以点P(-1,3)到该直线的距离为由于所以当且仅当k=1时取等号,所以距离的最大值等于 2.【解析】选D.在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为即y=2x-3, 故选D. 3.【解析】选B.直线y=ax-3a+2变为a(x-3)+(2-y)=0.又a∈R,∴ 解得 得定点为(3,2). 4.【思路点拨】先利用导数的几何意义求出切线l的方程,再求点P到直线l的距离. 【解析】选A.由题意得切点坐标为(-1,-1).切线斜率为k=y′|x=-1=2-3×(-1)2 =-1,故切线l的方程为y-(-1)=-1×[x-(-1)],整理得x+y+2=0,由点到直线的距离公式得:点P(3,2)到直线l的距离为 5.【解析】选C.由 由 6.【解析】选C.由题意知 解得 7.【思路点拨】分别求出点A关于∠B,∠C的平分线的对称点坐标,再利用角平分线的性质及两点式得BC的方程. 【解析】选A.点A(3,-1)关于直线x=0,y=x的对称点分别为A′(-3,-1), A″(-1,3),由角平分线的性质知,点A′和点A″都在直线BC上,故得直线BC的方程为y=2x+5. 8.【解析】选B.当l1与l2之间距离最大时,l1⊥AB,故l1的斜率为-1,又过点 A(1,3),由点斜式得l1的方程为y-3=-(x-1),即x+y-4=0. 9.【解析】选D.设点A(3,5)关于直线l:y=kx的对称点为B(x0,0),依题意得 解得 10.【解析】选C.由题意知,M点的轨迹为平行于l1, l2且到l1, l2距离相等的直线l,其方程为x+y-6=0, ∴M到原点的距离的最小值 11.【解析】 答案: 12.【解析】点A(1,1)关于x轴的对称点为C(1,-1), 则|PA|=|PC|,设BC与x轴的交点为M, 则|MA|+|MB|=|MC|+|MB|=|BC| 由三角形两边之和大于第三边知, 当P不与M重合时,|PA|+|PB|=|PC|+|PB|>|BC|, 故当P与M重合时,|PA|+|PB|取得最小值. 答案: 13.【解析】由两直线平行的条件得3m=4×6,解得m=8, 此时直线6x+my+14=0的方程可化为3x+4y+7=0, ∴两直线3x+4y-3=0和3x+4y+7=0间的距离为=2. 答案:2 【误区警示】本题求解时易不将6x+8y+14=0化简,直接求两平行线间的距离,得到的错误,根本缘由是没能把握好两平行线间距离公式的应用条件. 14.【解析】由题意知直线l1, l2恒过定点P(2,4),直线l1的纵截距为4-k,直线l2的横截距为2k2+2,如图所示: 所以四边形的面积S=[(4-k)+4]×2+×4×[(2k2+2)-2]=4k2-k+8,故面积最小时,k=. 答案: 15.【解析】(1)设 则 因此|PM|·|PN|=1. (2)连接OP,直线PM的方程为 即 解方程组 得 当且仅当即x0=1时等号成立,因此四边形OMPN面积的最小值为 关闭Word文档返回原板块。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服