1、因式分解练习题一、填空题:2(a3)(32a)=_(3a)(32a);12若m23m2=(ma)(mb),则a=_,b=_;15当m=_时,x2(m3)x25是完全平方式二、选择题:1下列各式的因式分解结果中,正确的是( )Aab7abbb(a7a) B3xy3xy6y=3y(x2)(x1)C8xyz6xy2xyz(43xy) D2a4ab6ac2a(a2b3c)2多项式m(n2)m(2n)分解因式等于( )A(n2)(mm) B(n2)(mm) Cm(n2)(m1) Dm(n2)(m1)3在下列等式中,属于因式分解的是( )Aa(xy)b(mn)axbmaybn Ba22abb1=(ab)1
2、C4a9b(2a3b)(2a3b) Dx7x8=x(x7)84下列各式中,能用平方差公式分解因式的是( )Aab Bab Cab D(a)b5若9xmxy16y是一个完全平方式,那么m的值是( )A12 B24 C12 D126把多项式an+4an+1分解得( )Aan(a4a) Ban-1(a1) Can+1(a1)(aa1)Dan+1(a1)(aa1)7若aa1,则a42a3a4a3的值为( )A8 B7 C10 D128已知xy2x6y10=0,那么x,y的值分别为( )Ax=1,y=3 Bx=1,y=3 Cx=1,y=3 Dx=1,y=39把(m3m)48(m3m)16分解因式得( )
3、A(m1)4(m2) B(m1)(m2)(m3m2)C(m4)(m1) D(m1)(m2)(m3m2)10把x7x60分解因式,得( )A(x10)(x6)B(x5)(x12) C(x3)(x20)D(x5)(x12)16下列各式xxx1,xyxyx,x2xy1,(x3x)(2x1中,不含有(x1)因式的有( )A1个 B2个 C3个D4个17把9x12xy36y分解因式为( )A(x6y3)(x6x3) B(x6y3)(x6y3)C(x6y3)(x6y3) D(x6y3)(x6y3)19已知ax2xb是完全平方式,且a,b都不为零,则a与b的关系为( )A互为倒数或互为负倒数 B互为相反数C
4、相等的数 D任意有理数20对x44进行因式分解,所得的正确结论是( )A不能分解因式B有因式x2x2 C(xy2)(xy8) D(xy2)(xy8)22(3x1)(x2y)是下列哪个多项式的分解结果( )A3x6xyx2y B3x6xyx2yCx2y3x6xy Dx2y3x6xy2364a8b因式分解为( )A(64a4b)(a4b) B(16ab)(4ab)C(8a4b)(8a4b) D(8ab)(8ab)249(xy)12(xy)4(xy)因式分解为( )A(5xy) B(5xy) C(3x2y)(3x2y) D(5x2y)25(2y3x)2(3x2y)1因式分解为( )A(3x2y1)
5、B(3x2y1)C(3x2y1) D(2y3x1)26把(ab)4(ab)4(ab)分解因式为( )A(3ab) B(3ba) C(3ba) D(3ab)27把a(bc)2ab(ac)(bc)b(ac)分解因式为( )Ac(ab) Bc(ab) Cc2(ab)Dc(ab)三、因式分解:1m(pq)pq; 2a(abbcac)abc;5a(bc)b(ca)c(ab); 6(x2x)2x(x2)1;7(xy)12(yx)z36z; 8x4ax8ab4b;9(axby)(aybx)2(axby)(aybx);10(1a)(1b)(a1)(b1);11(x1)9(x1); 124ab(abc);13a
6、bac4ac4a; 14xnyn;15(xy)125; 16(3m2n)(3m2n)17x6(xy)y6(yx); 188(xy)1; 20x4xy3y; 21x18x144; 22x42x8; 2757(a1)6(a1); 28(xx)(xx1)2;29xyxy4xy1; 30(x1)(x2)(x3)(x4)48;四、证明(求值):1已知ab=0,求a2bab2ab的值2求证:四个连续自然数的积再加上1,一定是一个完全平方数3证明:(acbd)(bcad)=(ab)(cd)4已知a=k3,b=2k2,c=3k1,求abc2ab2bc2ac的值5若xmxn=(x3)(x4),求(mn)的值6当a为何值时,多项式x7xyay5x43y24可以分解为两个一次因式的乘积7若x,y为任意有理数,比较6xy与x9y的大小8两个连续偶数的平方差是4的倍数