1、解答题规范专练(三)数列1(2021石家庄一模)已知an是各项均为正数的等比数列,且a1a22,a3a432.(1)求数列an的通项公式;(2)设数列bn满足an11(nN*),求数列bn的前n项和2(2021青岛二模)若数列bn对于任意的nN*,都有bn2bnd(常数),则称数列bn是公差为d的准等差数列如数列cn,若cn则数列cn是公差为8的准等差数列设数列an满足a1a,对于nN*,都有anan12n.(1)求证:an是准等差数列;(2)求an的通项公式及前20项和S20.3(2021天津红桥模拟)已知数列an的前n项和为Sn,且Snn2n(nN*)(1)求数列an的通项公式;(2)设c
2、n,数列cn的前n项和为Tn,求使不等式Tn对一切nN*都成立的最大正整数k的值;(3)设f(n)是否存在mN*,使得f(m15)5f(m)成立?若存在,求出m的值;若不存在,请说明理由答案1解:(1)设等比数列an的公比为q,由已知得又a10,q0,an2n1.(2)由题意可得2n1,2n112n1(n2),2n1,bn(2n1)2n1(n2),当n1时,b11,符合上式,bn(2n1)2n1(nN*)设数列bn的前n项和为Tn1321522(2n1)2n1,则2Tn12322523(2n3)2n1(2n1)2n,两式相减得Tn12(2222n1)(2n1)2n(2n3)2n3,Tn(2n3
3、)2n3.2解:(1)证明:anan12n(nN*),an1an22(n1),得an2an2(nN*)an是公差为2的准等差数列(2)由已知a1a,anan12n(nN*),a1a221,即a22a.由(1)得a1,a3,a5,是以a为首项,2为公差的等差数列a2,a4,a6,是以2a为首项,2为公差的等差数列当n为偶数时,an2a2na;当n为奇数时,ana2na1.anS20a1a2a3a4a19a20(a1a2)(a3a4)(a19a20)21232192200.3解:(1)当n1时,a1S16,当n2时,anSnSn1n5.而当n1时,n56,ann5(nN*)(2)cn,Tnc1c2cn.Tn1Tn0,Tn单调递增,故(Tn)minT1.令,得k671,所以kmax671.(3)f(n)当m为奇数时,m15为偶数,由f(m15)5f(m)得3m475m25,解得m11.当m为偶数时,m15为奇数,由f(m15)5f(m),得m2015m10,解得mN*(舍去)综上,存在唯一正整数m11,使得f(m15)5f(m)成立