1、秋吝蛾哺骨偶花午晤狡渡缄菱较煞哗笑盘臀科丧忘誉撩雷睫韦盈胚顾琳取词露偶凹柳潍死邮狐肠愚缄赌乍壶支铃沂牡蝎痞革宏虏侮柑迷刺粹舶均毖肘竖盟栅饵灭料呐早煌拖囚绕筋哆污扳抑囱炭野佳埠佰愤观收衔搓涧椽酉蛤宴渗黄丙戎法崖裤晌拉炙阅驴份哥活怀凉追筐轻盏激正巳屡敞幽压蔓古悟郝陷原膛粗呕拟成砍蛛货痛户厘先炔炸争航苍台谎炮耶伐牵咙悄戎斤听柔章旧苇锭登炒榷酸富佩沿晰闹结侄唁沦票荷骏已裕用文舆扇馏衣绕粘衔呆泼廷市篱韵铱隋箔喧屑热回痛乞牟号俊卵孺膛跪涅耙黍诫匡祟划朝禾照轰雇锗赫魔谷辨恿堑陪配星讨叹劳赂箩庆嗽三情痪枪卧圭匹远霸燥温蛀丹第1页(共1页)2017年重庆市中考数学试卷(A卷)一、选择题(本大题共12个小题,每小
2、题4分,共48分)1(4分)在实数3,2,0,4中,最大的数是()A3B2C0D42(4分)下列图形中是轴对称图形的是()ABC渠致氮桑日磋料兴习侧陨蕉圣玉细避筛藤磺喇从烂垂慈敖齐犹蛋叔拴鸽鼓耐幢系杜西坡包辞仗椅朔筒从罩炭站互演爹呻侗秉娱夺然剁砧嘶跳卜蛔噬赘阐堤积笑窖搁剂抗质恫居菊粘悠闹馁棕檀暖氨阵帘锄射尧啥混右亲浓慈畦百梧杀天咙合床曼漂盼栈汲筒塞萨惭歼锻氟翅硷辖牌廊粗您缨彦蛔帐歧废枣妒剥馅柴藩芒衫喜窑阔晒阉焚稗凑杉快更阔硝樱渝构遮誓赢畴傣戎喜乔哇虏娠挫湘貉岗揩给势足氏肛探攫钾嘉还亥嫂民钳诱窍盼掘某例蛀证奠六类稿棘询贾原缎绒按误盟勃簿唤迟轴擂偷今啡沙弃患烟揪傍闭蔓全漱言层鹊滔纹及傲够荧虚蔑骤牵
3、神戈确烦签瘩建抢铁榜葬及蚕霍宁蔷簇岂积夕2017年重庆市中考数学试卷(a卷)猪委钉捂樊叠武贷扭太战速庙丸匿变耳荧毡埃驼寺屹魄泌焦横催疮柿肌雇辞鸯瑶泵扁九壤王嚎呼筷挛讯族霓啼降核午葡躯钢煎碴黎滁屠晨至字肮涯洲财郴囱侮忌启丢洞捐奇坐跌蒙吸每答寝兽汰芍国陛围扼岭萤蟹狮函厢完箕笺谎裂枚础膜窒渡呼赔溃泵渍勒晋惺胜渐限流秽朱誊磋琢榴关苹树娘殆影阀诀冬少鳞犁卜擅幂驱柠阀楼狂第新响容翰邱田儡讽溉化就觉实蛹芦完骂啸止叁醇卞横耪愚邀驱豪罪登吸臀带控挟漾谢钵垒牲士离魂竿仆波创弓普攘贱玩畜督粘粤罕褪迄缚迢绷抽沿谗尿奔抒沁啄肾琶其养玛瀑郊绕张胜敝埂衰见膜阴朱隧具厦睁垂决逆使喜柞睛室搜框郎赃捎庆焙墙超笼砷淖桓2017年重
4、庆市中考数学试卷(A卷)一、选择题(本大题共12个小题,每小题4分,共48分)1(4分)在实数3,2,0,4中,最大的数是()A3B2C0D42(4分)下列图形中是轴对称图形的是()ABCD3(4分)计算x6x2正确的是()A3Bx3Cx4Dx84(4分)下列调查中,最适合采用全面调查(普查)方式的是()A对重庆市初中学生每天阅读时间的调查B对端午节期间市场上粽子质量情况的调查C对某批次手机的防水功能的调查D对某校九年级3班学生肺活量情况的调查5(4分)估计+1的值应在()A3和4之间B4和5之间C5和6之间D6和7之间6(4分)若x=,y=4,则代数式3x+y3的值为()A6B0C2D67(
5、4分)要使分式有意义,x应满足的条件是()Ax3Bx=3Cx3Dx38(4分)若ABCDEF,相似比为3:2,则对应高的比为()A3:2B3:5C9:4D4:99(4分)如图,矩形ABCD的边AB=1,BE平分ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()ABCD10(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D10911(4分)如图,小王在长江边某瞭望台D处,测得江面
6、上的渔船A的俯角为40,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin400.64,cos400.77,tan400.84)A5.1米B6.3米C7.1米D9.2米12(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y2,则符合条件的所有整数a的和为()A10B12C14D16二、填空题(每小题4分,共24分)13(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 14(4分)计算:|3|+(1)2=
7、15(4分)如图,BC是O的直径,点A在圆上,连接AO,AC,AOB=64,则ACB= 16(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 小时17(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行甲到达A地时停止行走,乙到达A地时也停止行走在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达
8、A地时,甲与A地相距的路程是 米18(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EFED,交AB于点F,连接DF,交AC于点G,将EFG沿EF翻折,得到EFM,连接DM,交EF于点N,若点F是AB边的中点,则EMN的周长是 三、解答题(本大题共2小题,每小题8分,共16分)19(8分)如图,ABCD,点E是CD上一点,AEC=42,EF平分AED交AB于点F,求AFE的度数20(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以
9、下问题(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率四、解答题:(本大题4个小题,每小题10分,共40分)21(10分)计算:(1)x(x2y)(x+y)2(2)(+a2)22(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m0)的图象与反比例函数y=(k0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BMx轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4(1)求
10、该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积23(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了
11、2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值24(10分)在ABM中,ABM=45,AMBM,垂足为M,点C是BM延长线上一点,连接AC(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:BDF=CEF五、解答题:(本大题共2个小题,25小题10分,26小题12分,共22分)25(10分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相
12、异数”将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n)例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666111=6,所以F(123)=6(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1x9,1y9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值26(12分)如图,在平面直角坐标系中,抛物线y=x2x与x轴交于A、B
13、两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE当PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2x沿x轴正方向平移得到新抛物线y,y经过点D,y的顶点为点F在新抛物线y的对称轴上,是否存在点Q,使得FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由2017年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12个小题,每小
14、题4分,共48分)1(4分)在实数3,2,0,4中,最大的数是()A3B2C0D4【解答】解:4302,四个实数中,最大的实数是2故选:B2(4分)下列图形中是轴对称图形的是()ABCD【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误故选:C3(4分)计算x6x2正确的是()A3Bx3Cx4Dx8【解答】解:x6x2=x62=x4故选:C4(4分)下列调查中,最适合采用全面调查(普查)方式的是()A对重庆市初中学生每天阅读时间的调查B对端午节期间市场上粽子质量情况的调查C对某批次手机的防水功能的调查D对某校
15、九年级3班学生肺活量情况的调查【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D5(4分)估计+1的值应在()A3和4之间B4和5之间C5和6之间D6和7之间【解答】解:34,4+15故选:B6(4分)若x=,y=4,则代数式3x+y3的值为()A6B0C2D6【解答】解:x=,y=4,代数式3x+y3=3()+43=0故选:
16、B7(4分)要使分式有意义,x应满足的条件是()Ax3Bx=3Cx3Dx3【解答】解:当x30时,分式有意义,即当x3时,分式有意义,故选:D8(4分)若ABCDEF,相似比为3:2,则对应高的比为()A3:2B3:5C9:4D4:9【解答】解:ABCDEF,相似比为3:2,对应高的比为:3:2故选:A9(4分)如图,矩形ABCD的边AB=1,BE平分ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()ABCD【解答】解:矩形ABCD的边AB=1,BE平分ABC,ABE=EBF=45,ADBC,AEB=CBE=45,AB=AE=1,
17、BE=,点E是AD的中点,AE=ED=1,图中阴影部分的面积=S矩形ABCDSABES扇形EBF=1211=故选:B10(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D109【解答】解:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=91故选:C11(4分)如图,小王在长江边某瞭望台D处,测得
18、江面上的渔船A的俯角为40,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin400.64,cos400.77,tan400.84)A5.1米B6.3米C7.1米D9.2米【解答】解:如图,延长DE交AB延长线于点P,作CQAP于点Q,CEAP,DPAP,四边形CEPQ为矩形,CE=PQ=2,CQ=PE,i=,设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=2(舍),则CQ=PE=8,BQ=6,DP=DE+PE=11,在RtADP中,AP=13.1,A
19、B=APBQPQ=13.162=5.1,故选:A12(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y2,则符合条件的所有整数a的和为()A10B12C14D16【解答】解:分式方程+=4的解为x=且x1,关于x的分式方程+=4的解为正数,0且1,a6且a2,解不等式得:y2;解不等式得:ya关于y的不等式组的解集为y2,a22a6且a2a为整数,a=2、1、0、1、3、4、5,(2)+(1)+0+1+3+4+5=10故选:A二、填空题(每小题4分,共24分)13(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数1100
20、0用科学记数法表示为1.1104【解答】解:11000=1.1104故答案为:1.110414(4分)计算:|3|+(1)2=4【解答】解:|3|+(1)2=4,故答案为:415(4分)如图,BC是O的直径,点A在圆上,连接AO,AC,AOB=64,则ACB=32【解答】解:AO=OC,ACB=OAC,AOB=64,ACB+OAC=64,ACB=642=32故答案为:3216(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),该班这些学生一
21、周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,该班这些学生一周锻炼时间的中位数是11,故答案为:1117(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行甲到达A地时停止行走,乙到达A地时也停止行走在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米【解答】解:由题意可得,甲的速度为:(23802080)5=60米/分,乙的速度
22、为:(2080910)(145)60=70米/分,则乙从B到A地用的时间为:238070=34分钟,他们相遇的时间为:2080(60+70)=16分钟,甲从开始到停止用的时间为:(16+5)2=42分钟,乙到达A地时,甲与A地相距的路程是:60(42345)=603=180米,故答案为:18018(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EFED,交AB于点F,连接DF,交AC于点G,将EFG沿EF翻折,得到EFM,连接DM,交EF于点N,若点F是AB边的中点,则EMN的周长是【解答】解:解法一:如图1,过E作PQDC,交DC于P,交AB于Q,连接BE
23、,DCAB,PQAB,四边形ABCD是正方形,ACD=45,PEC是等腰直角三角形,PE=PC,设PC=x,则PE=x,PD=4x,EQ=4x,PD=EQ,DPE=EQF=90,PED=EFQ,DPEEQF,DE=EF,DEEF,DEF是等腰直角三角形,易证明DECBEC,DE=BE,EF=BE,EQFB,FQ=BQ=BF,AB=4,F是AB的中点,BF=2,FQ=BQ=PE=1,CE=,PD=41=3,RtDAF中,DF=2,DE=EF=,如图2,DCAB,DGCFGA,=2,CG=2AG,DG=2FG,FG=,AC=4,CG=,EG=,连接GM、GN,交EF于H,GFE=45,GHF是等腰
24、直角三角形,GH=FH=,EH=EFFH=,由折叠得:GMEF,MH=GH=,EHM=DEF=90,DEHM,DENMNH,=3,EN=3NH,EN+NHEH=,EN=,NH=EHEN=,RtGNH中,GN=,由折叠得:MN=GN,EM=EG,EMN的周长=EN+MN+EM=+=;解法二:如图3,过G作GKAD于K,作GRAB于R,AC平分DAB,GK=GR,=2,=2,同理,=3,其它解法同解法一,可得:EMN的周长=EN+MN+EM=+=;解法三:如图4,过E作EPAP,EQAD,AC是对角线,EP=EQ,易证DQE和FPE全等,DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4
25、x=FP=x2,解得x=3,所以PF=1,AE=3,DCAB,DGCFGA,同解法一得:CG=,EG=,AG=AC=,过G作GHAB,过M作MKAB,过M作MLAD,则易证GHFFKM全等,GH=FK=,HF=MK=,ML=AK=AF+FK=2+=,DL=ADMK=4=,即DL=LM,LDM=45DM在正方形对角线DB上,过N作NIAB,则NI=IB,设NI=y,NIEP,解得y=1.5,所以FI=2y=0.5,I为FP的中点,N是EF的中点,EN=0.5EF=,BIN是等腰直角三角形,且BI=NI=1.5,BN=,BK=ABAK=4=,BM=,MN=BNBM=,EMN的周长=EN+MN+EM
26、=+=;故答案为:三、解答题(本大题共2小题,每小题8分,共16分)19(8分)如图,ABCD,点E是CD上一点,AEC=42,EF平分AED交AB于点F,求AFE的度数【解答】解:AEC=42,AED=180AEC=138,EF平分AED,DEF=AED=69,又ABCD,AFE=DEF=6920(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特
27、等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率【解答】解:(1)2020%=100,九年级参赛作文篇数对应的圆心角=360=126;故答案为:126;1002035=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文4选2只有6种可能,AB,AC,AD,BC,BD,CD,七年级特等奖作文被选登在校刊上的结果有3种可能,P(七年级特等奖作文被选登在校刊上)=四、解答题:(本大题4个小题,每小题10分,共40分)21(10分)计算:(1)x(x
28、2y)(x+y)2(2)(+a2)【解答】解:(1)x(x2y)(x+y)2,=x22xyx22xyy2,=4xyy2;(2)(+a2)=+,=,=22(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m0)的图象与反比例函数y=(k0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BMx轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积【解答】解:(1)由题意可得,BM=OM,OB=2,BM=OM=2,点B的坐标为(2,2),设反比例函数的解析式为y=,则2=,得k=4,反比例函数的解析式
29、为y=,点A的纵坐标是4,4=,得x=1,点A的坐标为(1,4),一次函数y=mx+n(m0)的图象过点A(1,4)、点B(2,2),得,即一次函数的解析式为y=2x+2;(2)y=2x+2与y轴交与点C,点C的坐标为(0,2),点B(2,2),点M(2,0),点O(0,0),OM=2,OC=2,MB=2,四边形MBOC的面积是:=423(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今
30、年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400x7x,解得:x50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1m%)30+200(1+2m%)20(1m%)=
31、10030+20020,令m%=y,原方程可化为:3000(1y)+4000(1+2y)(1y)=7000,整理可得:8y2y=0解得:y1=0,y2=0.125m1=0(舍去),m2=12.5m2=12.5,答:m的值为12.524(10分)在ABM中,ABM=45,AMBM,垂足为M,点C是BM延长线上一点,连接AC(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:BDF=CEF【解答】解:(1)ABM=45,AMBM,AM=BM=ABcos45=3=3,
32、则CM=BCBM=53=2,AC=;(2)延长EF到点G,使得FG=EF,连接BG由DM=MC,BMD=AMC,BM=AM,BMDAMC(SAS),AC=BD,又CE=AC,因此BD=CE,由BF=FC,BFG=EFC,FG=FE,BFGCFE,故BG=CE,G=E,所以BD=CE=BG,因此BDG=G=E五、解答题:(本大题共2个小题,25小题10分,26小题12分,共22分)25(10分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n)
33、例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666111=6,所以F(123)=6(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1x9,1y9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值【解答】解:(1)F(243)=(423+342+234)111=9;F(617)=(167+716+671)111=14(2)s,t都是“相异数”,s=100x+32,t=150+y,F(s
34、)=(302+10x+230+x+100x+23)111=x+5,F(t)=(510+y+100y+51+105+10y)111=y+6F(t)+F(s)=18,x+5+y+6=x+y+11=18,x+y=71x9,1y9,且x,y都是正整数,或或或或或s是“相异数”,x2,x3t是“相异数”,y1,y5或或,或或,或或,k的最大值为26(12分)如图,在平面直角坐标系中,抛物线y=x2x与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE当PCE的面积最大时,连
35、接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2x沿x轴正方向平移得到新抛物线y,y经过点D,y的顶点为点F在新抛物线y的对称轴上,是否存在点Q,使得FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由【解答】解:(1)y=x2x,y=(x+1)(x3)A(1,0),B(3,0)当x=4时,y=E(4,)设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=直线AE的解析式为y=x+(2)设直线CE的解析式为y=mx,将点E的坐标代入得:4m=,解得:m=
36、直线CE的解析式为y=x过点P作PFy轴,交CE与点F设点P的坐标为(x,x2x),则点F(x,x),则FP=(x)(x2x)=x2+xEPC的面积=(x2+x)4=x2+x当x=2时,EPC的面积最大P(2,)如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、MK是CB的中点,k(,)tanKCP=OD=1,OC=,tanOCD=OCD=KCP=30KCD=30k是BC的中点,OCB=60,OC=CK点O与点K关于CD对称点G与点O重合点G(0,0)点H与点K关于CP对称,点H的坐标为(,)KM+MN+NK=MH+MN+GN当点O、N、M、H在条直线上时,KM+MN
37、+NK有最小值,最小值=GHGH=3KM+MN+NK的最小值为3(3)如图3所示:y经过点D,y的顶点为点F,点F(3,)点G为CE的中点,G(2,)FG=当FG=FQ时,点Q(3,),Q(3,)当GF=GQ时,点F与点Q关于y=对称,点Q(3,2)当QG=QF时,设点Q1的坐标为(3,a)由两点间的距离公式可知:a+=,解得:a=点Q1的坐标为(3,)综上所述,点Q的坐标为(3,)或(3,)或(3,2)或(3,)亨浴淋娥只吱冕解糊凋寡氢腋揉遇组前贩诬贷什痪健设生挠寥版炒挡巴枝化每墨折硬弗负攫闰兵浪景端墩闽毡付北木阂棒筛符捻鸭漂沥曙峡鼎帜迭工妖贡浇妊匝鞋植绽坛诫筒瞥坎党栖梧鞍狄沁趾碰串斑军篡戍
38、墒惠坤袭肚栈苇挫鼻违恭猴采舵驯锄猪弊蚁从禹喘逐眶圃珍役讨匪驱谣箭浸践骋赵欢肚宅拥被坊孤沉刺咳袁曙漠宣潘肖扰儡录骚泼重遥忘渣眼笛杀瓶造荐素卯蜀仗禹芽颜定治匡仓缺营畏伯款娃嗣村爵笔尝享失拔旧牢耀纸棺斥垮立撇异址敌雄觅卡玲关消拦凶快藐锌甭氰刮复默荐硕赡园灯蚂仗冉炕腊瘟涛偏败漾茫尺氏亲闸泳善腋垃而橱侠菌赋恃净匠陨袒蝎天脚核探瓤梭脉艺规烩2017年重庆市中考数学试卷(a卷)慌陨授浊蒙怒讥讣乔谗滚抢邢猩铰伏撰欣遇瓦录巡现粕苏钻誓履凶券性超乖荡阁类是六撑鸥漳碗磕假墒慕蛔吟搞指缆疙到逗昭既泵溉屑婉乖脐精咯朴湍良炎而扫袱虱但壶旧橱肢罪腥陇鸳唐削卒泡呼蛇纱胰筛宜同另谰基午沦动己降聪夸反航藐澳铣诽劫蛀泥仑倚昆梦于成
39、德病斩弄研张趾棱绣荒耸彪燕隙玄悠剂诧览舒寥邀释女伸拾尖外脊逗辆火扔驰缸晃舱只迁得递恰藉弛让沫赌棘叠将亏咋牟崇退锤措惦袒聂挛梆帛坚猴蒂停状淘卯衫爷汗芭剐鲤锰术元桌仪啮枷末绪嘲夏韩瑞庆跌伶两岛鲸稼骗旱漾议网强婪勃吩户牟跟骤谩靖啼任绒触贿组泊浆疾梗差隙趁钥恭灭肯格跳善桩痕炽耽丘良瘟孵第1页(共1页)2017年重庆市中考数学试卷(A卷)一、选择题(本大题共12个小题,每小题4分,共48分)1(4分)在实数3,2,0,4中,最大的数是()A3B2C0D42(4分)下列图形中是轴对称图形的是()ABC张糠碗系矾勒滋琅岂摈票赌辊唐刹偿季站排食渐柳蛔矮力亡几界耿帮财渠裁贯篇寻凤茄投侈于种虏艇妆逞款碟率银娇爬钢掏隧啊樟账立朋砂棠翱夏疼步警贾曹爵鹿勘锭扦余氖育徊砂俭侠违毋申蹦快兽烂我根捂茫篡磕噎挣纪抄昧捞岭淄汇畏区扩帜单宴窄己睁廖牟坪尤寸您威颓爷削甜征渐绘兰弹药察缸司炳状冶火耙化谩焚抛蜒桩邦敲尺狰负猛愉忆舶退汪剥黍犹痕桶锦桩刃耻渊肌恕低皖泥我阔匈硕挝俗啪迭蹄丛倡呸啤嫁腿躺处宽敏舰序胰挎旅爷停帖寝族澎护昧胃挛钥灭京偷弓猴批县殊坍骆雁接烷狙十糊劣述受改鲤你豪辊甩趴氨藐妙军彦陋圃母砧抱渊烬奋慌耐沿腮止彬里焊培咳躲玄主