1、例题1在旋转锥阀与阀座之间有厚度为,动力粘度为的一层油膜,锥阀高为h,上、下底半径分别为和。 试证明,锥阀以角速度旋转时,作用在锥阀上的阻力矩为:解证明: 任取r到r+dr的一条微元锥面环带,在半径r处的速度梯度是,切应力,假定锥面上的微元环形面积为dA,则作用在锥阀微元环带表面上的微元摩擦力是dF=dA微元摩擦力矩 dT=dAr下面讨论dA的表达式,设半锥角为,显然,由锥阀的几何关系可得 将进行因式分解,并将Sin的表达式代入化简整理上式可得 例题2盛有水的密闭容器,其底部圆孔用金属圆球封闭,该球重19.6N,直径D=10cm,圆孔直径d=8cm,水深H1=50cm外部容器水面低10cm,H
2、2=40cm,水面为大气压,容器内水面压强为p0求:(1)当p0也为大气压时,求球体所受的压力;(2)当p0为多大的真空度时,球体将浮起。解: (1)计算p0=pa时,球体所受的水压力因球体对称,侧向水压力相互抵消,作用在球体上仅有垂直压力。如解例题2(a)图,由压力体的概念球体所受水压力为 (2)计算密闭容器内的真空度设所求真空度为Hm(水柱)高,欲使球体浮起,必须满足由于真空吸起的“吸力”+上举力=球重,如解例题2(b)图所示,即有平衡式 0.39 pK98000.39=3822N/m2当真空度pK3822N/m2时,球将浮起。例题3管道从突然扩大到时的局部水头损失为,为了减小水头损失的数
3、值,在与之间再增加一个尺寸为d的管段,试问:(1)d取何值时可使整体的损失为最小;(2)此时的最小水头损失为多少? 解(1)根据已知的圆管突然扩大局部水头损失公式 根据连续方程,增加直径为d的管段后,仍满足由此可得 (4-1) 在与之间加入直径为d的管段后,水头损失应该是两个突然扩大的局部水头损失之和,即 将(4-1)式代入 求导数 当时,取得极小值令,则 (4-2) (2)求的极小值 将及代入上式,则 再将(4-2)式代入并整理可得 利用(4-1)式,则 加中间段所得的损失正是原来突然扩大不加中间段时损失的一半,由此可见,逐渐扩大比突然扩大的损失要小得多。例题4比重S=0.85,运动粘度=0
4、.125cm/s的油在粗糙度=0.04mm的钢管中流动,管径d=300mm,流量Q=100l/s,试确定: (1)流动型态;(2)沿程阻力系数(3)粘性底层厚度(4)管壁上的切应力解首先判别流态 紊流 (1)假定光滑紊流区,用布拉修斯公式计算值,即粘性底层厚度 粘性底层厚度 由于,流动处于紊流光滑区,前述假定正确。(2)沿程阻力系数=0.0233 (3)粘性底层厚度=1.9mm (4)管壁处的切应力 例题5两水池的水位差H=24m,中间由四段管道连接,如图所示。已知水池水位保持不变,管长l=l=l=l=100m,管道直径d=d=d=100mm,d=200mm,沿程阻力系数阀门局部阻力系数=30
5、,其余局部阻力忽略不计。 试求: (1)管道中的流量 (2)如果关闭阀门,流量如何变化 解将阀门处的局部水头损失折合成第3管段适当长度L上的沿程水头损失,则 =令 ,故 沿程水头损失 令 ,管道摩阻 先求出每条管道的摩阻值 S可见 S=S=S=10 S (1)求管道通过的流量根据连续方程 Q=Q=Q+Q=Q (4-1)2管与3管并联 = (4-2)将(4-2)式代入(4-1)式,得 (4-3) (4-4)在图示的复杂管道中 所以 (2)当关闭了管中的阀门,流量如何变化阀门全部关闭后,成为三条管道串联,即 因为 所以 可见,关闭阀门后,虽然2管的流量增大了,但1管和4管的流量减小,使得从水池A到
6、水池B的输水能力降低了。 例题6梯形断面土渠,通过的流量Q=0.75,底坡i=,边坡系数m=1.5。砂质粘土,粗糙系数n=0.025,当渠道中水深为0.41.0m时不冲允许流速V=1.0m/s,不淤允许流速V=0.4m/s,试按宽深比=1.5设计断面尺寸。 解当渠道中形成均匀流时 Q=AC面积 A=(+m)=(1.5h+1.5h)h=3.0湿周 = b+2=1.5h+2h=5.11h水力半径 R=谢才系数 C= Q=A=3.0(0.587h) =3.587h h= = h=0.56m b=h=1.5 0.56=0.84m校核渠道允许流速 A=3.0 0.56=0.941 = 断面平均流速在允许
7、流速范围之内。 例题7证明:当断面比能E及渠道断面形式,尺寸(b、m)一定时,最大流量相应的水深是临界水深。 证明 (4-1) (4-2)当E一定时,断面形式,尺寸一定,A=f(h),上式为Q=F(h),绘出Qh关系曲线见6-3-4图。由图可知,Q=F(h)取得极大值,将(4-2)式对h取一阶导数,可得 令取得极大值,只能 因为则 将(4-1)式代入上式,可得 (4-3)式即为水流作临界流时临界水深关系式,可见,当断面比能Es一定,断面形状、尺寸一定时,最大流量时的水流作临界流,水深即为临界水深h,即 (4-3)5、某矩形断面渠道,底宽b=2m,试确定: (1)流量Q=2m/s时的临界水深及最
8、小断面比能 (2)断面比能Es=1m时的临界水深及最大流量 解(1)当Q=2m/s时 当Q一定时,断面比能最小时的水深为临界水深 (5-1)将上式对h取一阶导数,并令,Es取得极小值,此时临界水深满足 最小断面比能 (2)当Es=1m时 ,流量最大时的水深为临界水深,由(5-1)式可得 将上式对h取一阶导数,并令,Q取得极大值,此时临界水深满足 (5-3)因为 (5-4)联立求解(5-3)式和(5-4)式,可得 =0.67m,=3.43m3/s故临界水深为0.67m,最大流量为3.43m/s。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)