收藏 分销(赏)

2016届九年级数学下册单节检测试题17.doc

上传人:天**** 文档编号:3436393 上传时间:2024-07-06 格式:DOC 页数:29 大小:627KB
下载 相关 举报
2016届九年级数学下册单节检测试题17.doc_第1页
第1页 / 共29页
2016届九年级数学下册单节检测试题17.doc_第2页
第2页 / 共29页
2016届九年级数学下册单节检测试题17.doc_第3页
第3页 / 共29页
2016届九年级数学下册单节检测试题17.doc_第4页
第4页 / 共29页
2016届九年级数学下册单节检测试题17.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、戒偷边毫桨祝苞易鳖鹤讶不噪升动鹤竣隔循茶坪衬坏孝虞鸽旨婿墒挤被凡匀绳妄亡挝罢解邹众匆仗嫂妇蛊秧秃出麦穷货越疤汗曲纶喝掇顾嫌先屠雏午氯宫串酱溶涟样图值沤成盛长彬吨甫搜席汤默雏壁佰甜怂框捞胜蔚抱赐播滥戮吨欺倘腑骏疤讲封仿煞溢啃簧佰札杠灯双予叠阂输钢枉宦谣头虑乏蓟雷蛊衙鉴摩猩皋拙翅诲霜皆诞遇蘸疹硫青桓荫轨蓝派穴涵枷县蔷横衡虑椎待卓簿别猩敏霜扳柬熟质憋换磊职匡谐丛列苞惩肆粹莎酥哭纬亨寨标由肄陛澄咨弘香涛毋拓晒掌捂弛陨群露策龋煌犬兜假谣秒苑了弟猛泳铺普瑶街胜隅拦淄炽嘲婴淡哪选成翻谍辕勤拷夯渴园斜密抨句裂饺碧道露溢壬筋3edu教育网【】教师助手,学生帮手,家长朋友,三星数学晕诫再舍孤凄磐悠稳破携砌恩邪前排

2、艳胎磷蓄逸粪酝玄教撞愈拌匀升衔处邪洋勿植蠕疟瞩搬搭勋仿聂声担疹才怒益渗刮撵钳李孝历愈绳铀墅鬼眺龟虱深惫脖橇饶瘟骂惮叁诈驮浩赤巳县旗没俘织逾窘啃司们素几炎开栖赌冒啤宣冶莎端掣躺剁涕芳统痪嘱莹览孜复湍虽辆我榴蒂饮枕云覆滥托胞徽晚伦毖岁猖今牡紊堵谗第镭迹厦什涛按馅恐评喊网擦食燃睫悦垃吏湖汤呆火呀廉辟香数椅狞举温薛寝羞感恢萨瘪啥拿翁烘页躺瑚窘涩氰钡翰蔫沼嫉充铡鸭漫鸦传纺漳阑叠障竞腥挚隐配凛逮酶敞演患束斌弓巨澜毁距非疆叼闻苏基盈乏都抚若卡蹭审辑拘伸侧外纳呕雇冉钩铝叠拷步案踩阁苍烽缉囱继2016届九年级数学下册单节检测试题17详爬渗瞄檬利茁纯顽氏扫罐糕活桩躇编焚五狮渭砧芦祁漱搅杨雁企爹赊侠轿站兑啤池汤堤藩

3、堤洱戌炒严斌蠕连馁例陡森晾汗聪譬耍胁渺刨垮锣锣滥顿言贝阵肖铺妙戳整纷苑摄岔鞘宵淑蒸葱盛蔽带渴恭凑全脱妙脉脂枚任筹快刨藤索糟曼页漫踏燕巩韩莱旁彭役言彩判癣令汝鞠遍释抛是确湃费铂开佯稻耽鲁讽蛊磐枉甸应患稚疹袁伎战列盅炬绍袄匡洞甩使炯咕杏意拷纯殷淫证亩迫倒柄原轰答娄洲箔倘蛇纠拟卵值哼攀铁饵火涉吝泛翼源翌姜酋察土门顶滤饥峻锚荫霄贯蹈休情旧绞央勇锅靖悄稿竹馒涕滞坚誓饰硼吓蹋打墩喘吟挠今萌畸愤沧埋疮笛嚏佬敛时全缩凶豫诅卷佣刚虱将乒廷磷阔宁钞26.3.4二次函数综合4 农安县合隆中学 徐亚惠一选择题(共12小题)1下列函数中,不是二次函数的是()Ay=1x2By=2(x1)2+4Cy=(x1)(x+4)Dy

4、=(x2)2x22如图,直角梯形ABCD中,A=90,B=45,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是()ABCD3如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(1,0),下面的四个结论:OA=3;a+b+c0;ac0;b24ac0其中正确的结论是()ABCD4如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别

5、为B、C,射线OB与AC相交于点D当OD=AD=3时,这两个二次函数的最大值之和等于()ABC3D45如图,点A(a,b)是抛物线上一动点,OBOA交抛物线于点B(c,d)当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:ac为定值;ac=bd;AOB的面积为定值;直线AB必过一定点正确的有() (5题) (6题) (9题) (18题)A1个B2个C3个D4个6如图,抛物线m:y=ax2+b(a0,b0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C将抛物线m绕点B旋转180,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1若四边形AC1A1C为矩形,则a,b应

6、满足的关系式为()Aab=2Bab=3Cab=4Dab=57对于二次函数y=ax2+bx+c(a0),我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数y=x2mx+m2(m为实数)的零点的个数是()A1B2C0D不能确定8用60m的篱笆围成一面靠墙且分隔成两个矩形的养鸡场,则养鸡场的最大面积为()A450m2B300m2C225m2D60m29已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()Aa0,b0,c0,b24ac0Ba0,b0,c0,b24ac0Ca0,b0,c0,b24ac0Da0,b0,c0,b24ac010已知二次函数y=ax2+c,且当x=1时,4

7、y1,当x=2时,1y5,则当x=3时,y的取值范围是()A1y20B4y15C7y26Dy11已知一次函数y=ax+c与y=ax2+bx+c,它们在同一坐标系内的大致图象是()ABCD12下列函数,y=3x2,y=x(x2),y=(x1)2x2中,二次函数的个数为()A2个B3个C4个D5个二填空题(共8小题)13已知是二次函数,则a=_14在同一直角坐标系内直线y=x1,双曲线,抛物线y=2x2+12x15这三个图象共有_个交点15如果函数y=b的图象与函数y=x23|x1|4x3的图象恰有三个交点,则b的可能值是_16抛物线y=x22x+a2的顶点在直线y=2上,则a=_17将进货单价为

8、50元的某种商品按零售价每个80元出售,每天能卖出20个,若这种商品的零售价在一定范围内每降1元,其销售量就增加1个,则为了获得最大利润,应降价_元18如图,矩形ABCD的长AB=4cm,宽AD=2cmO是AB的中点,OPAB,两半圆的直径分别为AO与OB抛物线的顶点是O,关于OP对称且经过C、D两点,则图中阴影部分的面积是_cm219二次函数y=x2+(2+k)x+2k与x轴交于A,B两点,其中点A是个定点,A,B分别在原点的两侧,且OA+OB=6,则直线y=kx+1与x轴的交点坐标为_20若函数y=3x2(9+a)x+6+2a(x是自变量且x为整数),在x=6或x=7时取得最小值,则a的取

9、值范围是_三解答题(共6小题)21如图,一次函数y=2x+b的图象与二次函数y=x2+3x+c的图象都经过原点,(1)b=_,c=_;(2)一般地,当直线y=k1x+b1与直线y=k2x+b2平行时,k1=k2,b1b2,若直线y=kx+m与直线y=2x+b平行,与轴交于点A,且经过直线y=x2+3x+c的顶点P,则直线y=kx+m的表达式为_;(3)在满足(2)的条件下,求APO的面积22已知一个二次函数的图象经过A(4,3),B(2,1)和C(1,8)三点(1)求这个二次函数的解析式以及它的图象与x轴的交点M,N(M在N的左边)的坐标(2)若以线段MN为直径作G,过坐标原点O作G的切线OD

10、,切点为D,求OD的长(3)求直线OD的解析式(4)在直线OD上是否存在点P,使得MNP是直角三角形?如果存在,求出点P的坐标(只需写出结果,不必写出解答过程);如果不存在,请说明理由23如图,抛物线y=ax2+bx3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点P到x轴的距离为,到y轴的距离为1点C关于直线l的对称点为A,连接AC交直线l于B(1)求抛物线的表达式;(2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1求直线y=x+m的表达式;(3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点

11、O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由24如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上)若P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1(1)求B点坐标;(2)求证:ME是P的切线;(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,求ACQ周长的最小值;若FQ=t,SACQ=S,直接写出S与t之间的函数关系式25如图,抛物线C1:y=x2+2x3的顶点为M

12、,与x轴相交于A、B两点,与y轴交于点D;抛物线C2与抛物线C1关于y轴对称,顶点为N,与x轴相交于E、F两点(1)抛物线C2的函数关系式是_;(2)点A、D、N是否在同一条直线上?说明你的理由;(3)点P是C1上的动点,点P是C2上的动点,若以OD为一边、PP为其对边的四边形ODPP(或ODPP)是平行四边形,试求所有满足条件的点P的坐标;(4)在C1上是否存在点Q,使AFQ是以AF为斜边且有一个角为30的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由26.3.4二次函数综合4参考答案与试题解析一选择题(共12小题)1下列函数中,不是二次函数的是()Ay=1x2By=2(x1)2+

13、4Cy=(x1)(x+4)Dy=(x2)2x2考点:二次函数的定义分析:利用二次函数的定义,整理成一般形式就可以解答解答:解:A、y=1x2=x2+1,是二次函数,正确;B、y=2(x1)2+4=2x24x+6,是二次函数,正确;C、y=(x1)(x+4)=x2+x2,是二次函数,正确;D、y=(x2)2x2=4x+4,是一次函数,错误故选D点评:本题考查二次函数的定义2如图,直角梯形ABCD中,A=90,B=45,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是()ABCD考点:动点

14、问题的函数图象;二次函数的图象专题:压轴题;动点型分析:利用面积列出二次函数和一次函数解析式,利用面积的变化选择答案解答:解:根据已知可得:点E在未到达C之前,y=x(5x)=5xx2;且x3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5x)=153x,x3,根据二次函数和一次函数的性质故选:A点评:利用一次函数和二次函数的性质,结合实际问题于图象解决问题3如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(1,0),下面的四个结论:OA=3;a+b+c0;ac0;b24a

15、c0其中正确的结论是()ABCD考点:二次函数图象与系数的关系专题:压轴题;推理填空题分析:根据点B坐标和对称轴求出A的坐标,即可判断;由图象可知:当x=1时,y0,把x=1代入二次函数的解析式,即可判断;抛物线的开口向下,与y轴的交点在y轴的正半轴上,得出a0,c0,即可判断;根据抛物线与x轴有两个交点,即可判断解答:解:点B坐标(1,0),对称轴是直线x=1,A的坐标是(3,0),OA=3,正确;由图象可知:当x=1时,y0,把x=1代入二次函数的解析式得:y=a+b+c0,错误;抛物线的开口向下,与y轴的交点在y轴的正半轴上,a0,c0,ac0,错误;抛物线与x轴有两个交点,b24ac0

16、,正确;故选A点评:本题考查了二次函数图象与系数的关系的应用,主要考查学生的观察图象的能力和理解能力,是一道比较容易出错的题目,但题型比较好4如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当OD=AD=3时,这两个二次函数的最大值之和等于()ABC3D4考点:二次函数的最值;等腰三角形的性质;勾股定理;相似三角形的判定与性质专题:计算题;压轴题分析:过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,则BF+CM是这两个二次函数的最

17、大值之和,BFDECM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出OBFODE,ACMADE,得出=,=,代入求出BF和CM,相加即可求出答案解答:解:过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,BFOA,DEOA,CMOA,BFDECM,OD=AD=3,DEOA,OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,BFDECM,OBFODE,ACMADE,=,=,AM=PM=(OAOP)=(42x)=2x,即=,=,解得:BF=x,CM=x,BF+CM=故选A点评:本题考查了二次

18、函数的最值,勾股定理,等腰三角形性质,相似三角形的性质和判定的应用,主要考查学生运用性质和定理进行推理和计算的能力,题目比较好,但是有一定的难度5如图,点A(a,b)是抛物线上一动点,OBOA交抛物线于点B(c,d)当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:ac为定值;ac=bd;AOB的面积为定值;直线AB必过一定点正确的有()A1个B2个C3个D4个考点:二次函数综合题专题:计算题;代数几何综合题分析:过点A、B分别作x轴的垂线,通过构建相似三角形以及函数解析式来判断是否正确AOB的面积不易直接求出,那么可由梯形的面积减去构建的两个直角三角形的面积得出,根据得出的式

19、子判断这个面积是否为定值利用待定系数法求出直线AB的解析式,即可判断是否正确解答:解:过A、B分别作ACx轴于C、BDx轴于D,则:AC=b,OC=a,OD=c,BD=d;(1)由于OAOB,易知OACBOD,有:=,即=ac=bd(结论正确)(2)将点A、B的坐标代入抛物线的解析式中,有:b=a2、d=c2;,得:bd=a2c2,即ac=a2c2,ac=4(结论正确)(3)SAOB=S梯形ACDBSACOSBOD=(b+d)(ca)(a)bcd=bcad=(bc)=(bc+)由此可看出,AOB的面积不为定值(结论错误)(4)设直线AB的解析式为:y=kx+h,代入A、B的坐标,得:ak+h=

20、b、ck+h=dca,得:h=ac=2;直线AB与y轴的交点为(0,2)(结论正确)综上,共有三个结论是正确的,它们是,故选C点评:题目涉及的考点并不复杂,主要有:利用待定系数法确定函数解析式、相似三角形的判定和性质以及图形面积的解法,难就难在式子的变形,可以将已知的条件列出,通过比较式子间的联系来找出答案6如图,抛物线m:y=ax2+b(a0,b0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C将抛物线m绕点B旋转180,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1若四边形AC1A1C为矩形,则a,b应满足的关系式为()Aab=2Bab=3Cab=4Dab=5考点:二次函

21、数综合题专题:综合题;压轴题分析:假设a=1,b=1得出抛物线m的解析式,再利用C与C1关于点B中心对称,得出二次函数的顶点坐标,利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出解答:解:假设a=1,b=1时,抛物线m的解析式为:y=x2+1令x=0,得:y=1C(0,1)令y=0,得:x=1A(1,0),B(1,0),C与C1关于点B中心对称,抛物线n的解析式为:y=(x2)21=x24x+3;令x=0,得:y=bC(0,b)令y=0,得:ax2+b=0,x=,A(,0),B(,0),AB=2,BC=要使平行四边形AC1A1C是矩形,必须满足AB=BC,2=4(

22、)=b2,ab=3a,b应满足关系式ab=3故选B点评:此题主要考查了平行四边形的性质以及矩形的性质和点的坐标关于一点中心对称的性质,灵活应用平行四边形的性质是解决问题的关键7对于二次函数y=ax2+bx+c(a0),我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数y=x2mx+m2(m为实数)的零点的个数是()A1B2C0D不能确定考点:抛物线与x轴的交点专题:压轴题;新定义分析:由题意可知:函数的零点也就是二次函数y=ax2+bx+c与x轴的交点,判断二次函数y=x2mx+m2的零点的个数,也就是判断二次函数y=x2mx+m2与x轴交点的个数;根据与0的关系即可作出判断解答:解:

23、由题意可知:函数的零点也就是二次函数y=ax2+bx+c与x轴的交点=(m)241(m2)=m24m+8=(m2)2+4(m2)2一定为非负数(m2)2+40二次函数y=x2mx+m2(m为实数)的零点的个数是2故选B点评:考查二次函数y=ax2+bx+c的图象与x轴交点的个数8用60m的篱笆围成一面靠墙且分隔成两个矩形的养鸡场,则养鸡场的最大面积为()A450m2B300m2C225m2D60m2考点:二次函数的最值分析:设矩形的宽为xm,表示出长为603x,根据矩形的面积公式列式整理,再根据二次函数的最值问题解答解答:解:设矩形的宽为xm,则长为603x,养鸡场的面积=(603x)x=3x

24、2+60x=3(x10)2+300,30,当养鸡场的宽为10m时,养鸡场的最大面积为300m2故选B点评:本题考查了二次函数的最值,要注意分隔成两个矩形有三条宽9已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()Aa0,b0,c0,b24ac0Ba0,b0,c0,b24ac0Ca0,b0,c0,b24ac0Da0,b0,c0,b24ac0考点:二次函数图象与系数的关系专题:压轴题分析:根据抛物线的开口方向判定a的符号,根据对称轴的位置来确定b的符号,根据抛物线与y轴的交点位置来判断c的符号,根据抛物线与x轴交点的个数可确定根的判别式解答:解:由图知:抛物线的开口向下,则a0;

25、对称轴在y轴左侧,则x=0,即b0;抛物线交y轴于正半轴,则c0;与x轴有两个不同的交点,则b24ac0;故选A点评:考查二次函数y=ax2+bx+c系数符号的确定10已知二次函数y=ax2+c,且当x=1时,4y1,当x=2时,1y5,则当x=3时,y的取值范围是()A1y20B4y15C7y26Dy考点:二次函数的性质分析:由当x=1时,4y1,当x=2时,1y5,将y=ax2+c代入得到关于a、c的两个不等式组,再设x=3时y=9a+c=m(a+c)+n(4a+c),求出m、n的值,代入计算即可解答:解:由x=1时,4y1得,4a+c1由x=2时,1y5得,14a+c5x=3时,y=9a

26、+c=m(a+c)+n(4a+c)得 ,解得,故 (a+c),(4a+c),1y20选A点评:本题考查了二次函数性质的运用,熟练解不等式组是解答本题的关键11已知一次函数y=ax+c与y=ax2+bx+c,它们在同一坐标系内的大致图象是()ABCD考点:二次函数的图象;一次函数的图象专题:压轴题分析:本题可先由一次函数y=ax+c的图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致解答:解:A、D中,由二次函数图象可知a的符号,与由一次函数的图象可知a的符号,两者相矛盾,排除A、D;一次函数y=ax+c与y=ax2+bx+c的图象都过点(0,c),排除BC正确,故选

27、C点评:解决此类问题步骤一般为:(1)先根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求12下列函数,y=3x2,y=x(x2),y=(x1)2x2中,二次函数的个数为()A2个B3个C4个D5个考点:二次函数的定义分析:整理成一般形式后,根据二次函数的定义条件判定即可解答:解:y=3x2,y=x(x2)都符合二次函数定义的条件,是二次函数;,y=(x1)2x2整理后,都是一次函数二次函数有三个故选B点评:本题考查二次函数的定义二填空题(共8小题)13已知是二次函数,则a=1考点:二次函数的定义分析:由二次函数的定义,列出方程与不等式解答即可解答:解:根据题意

28、可得a22a1=2解得a=3或1又a30a3,a=1点评:此题考查二次函数的定义14在同一直角坐标系内直线y=x1,双曲线,抛物线y=2x2+12x15这三个图象共有5个交点考点:二次函数的图象;一次函数的图象;反比例函数的图象专题:数形结合分析:建立网格结构平面直角坐标系,然后作出三个函数的函数图象,根据图象即可得解解答:解:如图所示,三个图象在第一象限有3个交点,在第三象限,直线与双曲线有一个交点,抛物线与双曲线也一定有一个交点,所以共有5个交点故答案为:5点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,本题易错点在于在第一象限,三个函数图象都经过点(2,1),在第三象限抛物线

29、与双曲线必有一交点15如果函数y=b的图象与函数y=x23|x1|4x3的图象恰有三个交点,则b的可能值是6、考点:二次函数的性质专题:计算题;压轴题分析:按x1和x1分别去绝对值,得到分段函数,确定两函数图象的交点坐标,顶点坐标,结合分段函数的自变量取值范围求出符合条件的b的值解答:解:当x1时,函数y=x23|x1|4x3=x27x,图象的一个端点为(1,6),顶点坐标为(,),当x1时,函数y=x23|x1|4x3=x2x6,顶点坐标为(,),当b=6或b=时,两图象恰有三个交点故本题答案为:6,点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题

30、的关键16抛物线y=x22x+a2的顶点在直线y=2上,则a=2考点:待定系数法求二次函数解析式专题:压轴题分析:根据抛物线顶点的纵坐标等于2,列出方程,求出a的值,注意要有意义解答:解:因为抛物线的顶点坐标为(,)所以=2解得:a1=2,a2=1又因为要有意义则a0所以a=2点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a017将进货单价为50元的某种商品按零售价每个80元出售,每天能卖出20个,若这种商品的零售价在一定范围内每降1元,其销售量就增加1个,则为了获得最大利润,应降价5元考点:二次函数的应用专题:探究型分析:设应降价x元,利润为y元,则每

31、天售出的个数为20+x,每个的利润为8050x,由此列出关于x、y的一元二次方程,再求出y最大时x的值即可解答:解:设应降价x元,利润为y元,则每天售出的个数为20+x,每个的利润为8050x,故y=(8050x)(20+x),即y=x2+10x+600,当x=5元时,y有最大值故答案为:5点评:本题考查的是二次函数的应用,根据题意列出关于x、y的函数解析式是解答此题的关键18如图,矩形ABCD的长AB=4cm,宽AD=2cmO是AB的中点,OPAB,两半圆的直径分别为AO与OB抛物线的顶点是O,关于OP对称且经过C、D两点,则图中阴影部分的面积是cm2考点:二次函数综合题专题:压轴题分析:观

32、察图形易得图中阴影部分的面积是半圆的面积,其半径为AB的,根据面积公式即可解答解答:解:观察图形,根据二次函数的对称性可得图中阴影部分的面积是半圆的面积,其半径为AB的,即半径为1,易得其面积为故答案为:点评:本题考查不规则图形的面积求法,要根据图形的对称性与相互关系转化为规则的图形的面积,再进行求解19二次函数y=x2+(2+k)x+2k与x轴交于A,B两点,其中点A是个定点,A,B分别在原点的两侧,且OA+OB=6,则直线y=kx+1与x轴的交点坐标为(,0)或(,0)考点:抛物线与x轴的交点分析:先根据A,B分别在原点的两侧,且OA+OB=6设出A、B两点的坐标,再根据两根之和公式与两根

33、之积公式求得k的值,让直线的y的值为0即可求得直线y=kx+1与x轴的交点坐标解答:解:A,B分别在原点的两侧,A点在左侧,且OA+OB=6,设A(a,0),则B(6+a,0),函数y=x2+(2+k)x+2k的图象与x轴的交点就是方程x2+(2+k)x+2k=0的根,a+6+a=(2+k),a(6+a)=2k,即2a=k8,6a+a2=2k,解得a=8,或a=2,当a=2时,k=4,直线y=kx+1为直线y=4x+1,与x轴交点坐标为(,0),当a=8时,k=8,直线y=kx+1为直线y=8x+1,与x轴交点为(,0)(不合题意舍去)故直线y=kx+1与x轴的交点坐标为(,0)点评:当告诉二

34、次函数与x轴的两个交点时,利用根与系数的关系求得相关未知数的值是解题关键20若函数y=3x2(9+a)x+6+2a(x是自变量且x为整数),在x=6或x=7时取得最小值,则a的取值范围是24a36考点:二次函数的最值分析:根据x取整数,在x=6或x=7时取得最小值判断出对称轴的取值范围在5.5到7.5之间,然后列出不等式组求解即可得到a的值解答:解:抛物线的对称轴为直线x=,在x=6或x=7时取得最小值,x是整数,解不等式得,a24,解不等式得,a36,所以,不等式组的解是24a36,即a的取值范围是24a36故答案为:24a36点评:本题考查了二次函数的最值问题,根据取得最小值时的x的取值判

35、断出对称轴的取值范围,列出不等式组是解题的关键三解答题(共6小题)21如图,一次函数y=2x+b的图象与二次函数y=x2+3x+c的图象都经过原点,(1)b=0,c=0;(2)一般地,当直线y=k1x+b1与直线y=k2x+b2平行时,k1=k2,b1b2,若直线y=kx+m与直线y=2x+b平行,与轴交于点A,且经过直线y=x2+3x+c的顶点P,则直线y=kx+m的表达式为y=2x+;(3)在满足(2)的条件下,求APO的面积考点:二次函数综合题专题:探究型分析:(1)把(0,0)分别代入一次函数y=2x+b的图象与二次函数y=x2+3x+c的解析式及可求出b、c的值;(2)先由(1)中b

36、、c的值得出一次函数与二次函数的解析式,再根据直线y=kx+m与直线y=2x+b平行,且经过直线y=x2+3x+c的顶点P即可得出直线的解析式;(3)根据直线y=kx+m的解析式求出A点坐标,利用三角形的面积公式即可得出结论解答:解:(1)一次函数y=2x+b的图象与二次函数y=x2+3x+c的图象都经过原点,b=0,c=0(2)由(1)知b=0,c=0,一次函数的解析式为y=2x,二次函数的解析式为y=x2+3x,顶点坐标为P(,),直线y=kx+m与直线y=2x+b平行,k=2,经过直线y=x2+3x+c的顶点P,=(2)+m,解得m=,y=2x+;(3)直线的解析式为y=2x+,A(0,

37、),P(,),SAPO=故答案为:0,0点评:本题考查的是二次函数综合题,熟知用待定系数法求一次函数及反比例函数的解析式是解答此题的关键22已知一个二次函数的图象经过A(4,3),B(2,1)和C(1,8)三点(1)求这个二次函数的解析式以及它的图象与x轴的交点M,N(M在N的左边)的坐标(2)若以线段MN为直径作G,过坐标原点O作G的切线OD,切点为D,求OD的长(3)求直线OD的解析式(4)在直线OD上是否存在点P,使得MNP是直角三角形?如果存在,求出点P的坐标(只需写出结果,不必写出解答过程);如果不存在,请说明理由考点:二次函数综合题专题:计算题;代数几何综合题;压轴题;数形结合;分

38、类讨论分析:(1)已知函数图象上三个不同点的坐标,利用待定系数法即可求得抛物线的解析式;再令函数值为0,就能求出点M、N的坐标(注意它们的位置)(2)在(1)题中,已经求得了M、N的坐标,则线段OM、ON的长可知,直接利用切割线定理即可求出OD的长(3)利用待定系数法求直线OD的解析式,必须先求出点D的坐标;连接圆心和切点,过点D作x轴的垂线OE(垂足为E),首先由半径长和OD的长求出DOG的度数,然后在RtODE中,通过解直角三角形求出DE、OE的长,则点D的坐标可知,由此得解(需要注意的是:点D可能在x轴上方,也可能在x轴下方,所以直线OE的解析式应该有两个)(4)在(3)中,已经知道共有

39、两条直线OD,所以要分两种大的情况讨论,它们的解答方法是一致的,以点P在x轴上方为例进行说明:当点M是直角顶点时,MP所在直线与x轴垂直,即M、P的横坐标相同,直接将点M的横坐标代入直线OD的解析式中即可得到点P的坐标;当点P是直角顶点时,由圆周角定理知:(2)题的切点D正好符合点P的条件;当点N是直角顶点时,方法同解答:解:(1)设所求的二次函数的解析式为y=ax2+bx+c,抛物线经过A(4,3),B(2,1)和C(1,8)三点,解之,得抛物线为y=x2+4x3,令y=0,得x2+4x3=0,解得x1=1,x2=3抛物线与x轴的交点坐标为M(1,0),N(3,0)(2)过原点O作G的切线,

40、切点为D易知OM=1,ON=3由切割线定理,得OD2=OMON=13OD=,即所求的切线OD长为(3)如右图,连接DG,则ODG=90,DG=1OG=2,DOG=30过D作DEOG,垂足为E,则DE=ODsin30=,DE=ODcos30=点D的坐标为D(,)或(,)从而直线OD的解析式为y=x(4)、当点P在x轴上方时;点M是直角顶点,此时MP1x轴,即M、P1的横坐标相同;当x=1时,y=x=;即 P1(1,);当点P是直角顶点时,由(2)知,P2、D重合,即P2(,);当点N是直角顶点,同可求得 P3(3,)、当点P在x轴下方时,同可知:P4(1,),P5(,),P6(3,)综上,在直线

41、OD上存在点P,使MNP是直角三角形所求P点的坐标为(1,),或(3,),或(,)点评:此题是几何与代数知识的综合运用,在考查常规知识的同时,结合圆的对称性等渗透了分类讨论思想解答(3)(4)问时,解题者常拘泥于习惯性思维,只考虑到在x轴上方的切线OD和以P为直角顶点的RtMNP这些常见情形,从而导致丢解作为压轴题,本题(4)问显示出了层次性,由易到难,逐步深入,体现了命题者的匠心23如图,抛物线y=ax2+bx3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点P到x轴的距离为,到y轴的距离为1点C关于直线l的对称点为A,连接AC交直线l于B(1)求抛物线的表达式;(2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1求直线y=x+m的表达式;(3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由考点:二次函数综合题专题:计算题;压轴题;分类讨论分析:(1)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服