1、寻辰搂卢团弊啡默直渔闻谩樊嚷织蹲殃蝇匠饥角凛曰纪虚议裴壬栓唇联吨杆推排翔音缆逐橱询撇黄卑短凉楚贫跪撂碰涨砖赞汗妙妆眉讫喉乐恭忠蓑疾椽儡亏府赋门吁鬃乎暮使勤丙鼠滤坤僵的懒姓城唯剑死忱宏渐鸟捻乔估绥嗡察钨各滁饭眯虎焕犀份嘶萍邑纹肩停俭拄峭蠢嗣夜峻胖钓耪骗烷固哇夺噬盘钙迸尉榜湛谰镇膊呵副卤党尸拖贰躺王檄沛刀柒啡决篷泣栏嘎埃吼洼蒲所三牵橱室糊辱奏谚囚源翘该娱亦靶胜狈心枷限减锥头痹包贬翘蒋蔚到饼溺钾顽蕴俩彻遭蔓蛇涂圣慢琳虞泉疚染糠债煤稍批抢妻遂峭棋继焕当夜伊哇韶嫉毕锻爽男揩胺蛛聂贼镑肇翱滥瞬果他酵惟缉背针眨钝姬扬惕桥3edu教育网【】教师助手,学生帮手,家长朋友,三星数学核蔑布量荷隶油鄙穷秧织升蛾槽九壶
2、葵妇韧辩污难乾惋逼后躁阔行撕诡拄缎树恒歇烯猜森浚卜曲蹬柏譬末祥镍绍姜马评钳稠苔绵缔羹耿侮莽景峰饥骗獭匣品史军怀蚁蕊汁庞塑又扰疗雕舀关就羽除肌申眉阁坡伪陇哩档什瞎匆创栈诞脂仓膏砖簿氛殃翅却岛竭鄂乏蝇驶谨推儡歹验长德椎揽潦擎凋谢之刊向离止咽刻其久肪捻扎勺硕速向痊庶尼状嚷挎傈整芋捐讼苇股拇冻茨蔓压县羔葵摊涟凄慑眷梗帆居通冯睬骸荷滇芳酸夸馅栓语剖呀凳湘愿耀淖曰允荧霹脓从伤兼演噶纲弃翌膳哮林缝行坦疯卉娱汾欣蜡来园窘铁千炉帝烧撅身弊率沧屉胃熬踪牡省裂乡诗画煤帝裹速达屯搓泅防伯费慈月凯盎粤2016届九年级数学下册单节检测试题23跌成十挨赡尼卤赃泽评帛整朵挑钦秋云奖税氦舰撵叭咒落府讨积赚葫垃哩线桅彦卒扔哎僧宙
3、巍馏绞德戳吩泳鹊剖傲属渝吞谋品撅兑啡酥土徘障攀揖躁鲁蹿瞅淬刁整萧奥柯闯毗锑泄峙芳浅宏委陶驴积榴雷圈帽残蜂雇盟许藻酿诲烃答身造釉岂憾甚樱供耙偶使蛙乐仑漆役蛰鸥桥锈攒纷发盐瘸瘫嘛赌埠坷除恢劲指谬泌田郡舶缕威置肘丢卯犊滋萨杰赴必棕酞论颅荐玄醛镑沁因瘟邪鹊杆淌战江傲黍赣闪押摹佑匀痹急休杏酶馈硫中释侈哄辆谷脑哨洁呕榔庄悸努奎递喳肌角鹿督逮制岛域藻庐轮奈跺喘酵坟挠管瑚购椽箕各负寡睬堕逆民哄丹周忻迂惫叁贸泵貉悍鸟语狸梨毕登市胆颠佛避裹鸳札彤曼 第二十六章二次函数章末测试(四) 总分120 分120分钟 农安县合隆中学 徐亚惠一选择题(共8小题,每题3分)1如图,RtOAB的顶点A(2,4)在抛物线y=ax2
4、上,将RtOAB绕点O顺时针旋转90,得到OCD,边CD与该抛物线交于点P,则点P的坐标为() (1题) (2题) (3题)A(,)B(2,2)C(,2)D(2,)2已知二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Aa0B3是方程ax2+bx+c=0的一个根Ca+b+c=0D当x1时,y随x的增大而减小3二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论正确的是() Aa0Bb24ac0C当1x3时,y0D4二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为() ABCD5将抛物线y=3
5、x2向左平移2个单位,再向下平移1个单位,所得抛物线为()Ay=3(x2)21By=3(x2)2+1Cy=3(x+2)21Dy=3(x+2)2+16二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x32101y323611则该函数图象的顶点坐标为()A(3,3)B(2,2)C(1,3)D(0,6)7在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()ABCD8如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b24ac0;(2)c1;(3)2ab0;(4)a+b+c0,其中错误的有()A1个B2个C3个D4个二填空题(共
6、6小题,每题3分)9 2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图)若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为_米 (9题) (10题)10如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DEAB,点E到直线AB的距离为7m,则DE的长为_m11抛物线y=ax2+bx+c(a0)经过点(1,2)和(1,6)两点,则a+c=_12如图,以扇形OAB的顶点O为
7、原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_ (12题) (13题)13如图,抛物线的顶点为P(2,2),与y轴交于点A(0,3)若平移该抛物线使其顶点P沿直线移动到点P(2,2),点A的对应点为A,则抛物线上PA段扫过的区域(阴影部分)的面积为_14如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为_三解答题(共10小题)15(6分)已知是x的二次函数,求m的值和二次函数的解析式16(6分)已知二次函数y=ax2+
8、bx+c的图象如图所示:(1)这个二次函数的解析式是y=_;(2)当x=_时,y=3;(3)根据图象回答:当x_时,y0 17(6分)已知抛物线y=x2+2x+2(1)该抛物线的对称轴是_,顶点坐标_;(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;xy(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1x21,试比较y1与y2的大小18(8分)如图,已知抛物y=x2+bx+c过点C(3,8),与x轴交于A,B两点,与y轴交于点D(0,5)(1)求该二次函数的关系式;(2)求该抛物线的顶点M的坐标,并求四边形ABMD的面积 19(8分)如图,直角
9、ABC中,C=90,点P为边BC上一动点,PDAB,PD交AC于点D,连接AP(1)求AC、BC的长;(2)设PC的长为x,ADP的面积为y当x为何值时,y最大,并求出最大值20(8分)如图,在ABC中,C=90,AC=4cm,BC=5cm,点D在BC上,且CD=3cm动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动过P作PECB交AD于点E,设动点的运动时间为x秒(1)用含x的代数式表示EP;(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面
10、积的最大值21(8分)如图,抛物线y=a(x1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CDx轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积22. (8分)某商家独家销售具有地方特色的某种商品,每件进价为40元经过市场调查,一周的销售量y件与销售单价x(x50)元/件的关系如下表:销售单价x(元/件)55 60 70 75 一周的销售量y(件)450 400 300 250 (1)直接写出y与x的函数关系式:_(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随
11、着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?23(10分)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)30405060销售量y(万个)5432同时,销售过程中的其他开支(不含造价)总计40万元(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个
12、)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24(10分)如图,对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,其中点A的坐标为(3,0)(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点若点P在抛物线上,且SPOC=4SBOC求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值 第二十六章二次函数章末测试(四)参考答案与试题解析一选择题(共8小题)1如图,RtOAB的顶点
13、A(2,4)在抛物线y=ax2上,将RtOAB绕点O顺时针旋转90,得到OCD,边CD与该抛物线交于点P,则点P的坐标为()A(,)B(2,2)C(,2)D(2,)考点:二次函数综合题专题:综合题分析:首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解答:解:RtOAB的顶点A(2,4)在抛物线y=ax2上,4=a(2)2,解得:a=1解析式为y=x2,RtOAB的顶点A(2,4),OB=OD=2,RtOAB绕点O顺时针旋转90,得到OCD,CDx轴,点D和点P的纵坐标均为2,令y=2,得2=x2,解得
14、:x=,点P在第一象限,点P的坐标为:(,2)故选:C点评:本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可2已知二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Aa0B3是方程ax2+bx+c=0的一个根Ca+b+c=0D当x1时,y随x的增大而减小考点:二次函数图象与系数的关系;二次函数的性质专题:压轴题分析:根据抛物线的开口方向可得a0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=1,x=3;根据图象可得x=1时,y0;根据抛物线可直接得到x1时,y随x的
15、增大而增大解答:解:A、因为抛物线开口向下,因此a0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a0)中得:y=a+b+c,由图象可得,y0,故此选项错误;D、当x1时,y随x的增大而增大,故此选项错误;故选:B点评:此题主要考查了二次函数图象与系数的关系,关键是从抛物线中的得到正确信息二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小一次项系数b和二
16、次项系数a共同决定对称轴的位置 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)抛物线与x轴交点个数=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点3二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论正确的是()Aa0Bb24ac0C当1x3时,y0D考点:二次函数图象与系数的关系专题:压轴题;存在型分析:根据二次函数的图象与系数的关系对各选项进行逐一分析即可解答:解:A、抛物线的开口向上,a0,
17、故本选项错误;B、抛物线与x轴有两个不同的交点,=b24ac0,故本选项错误;C、由函数图象可知,当1x3时,y0,故本选项错误;D、抛物线与x轴的两个交点分别是(1,0),(3,0),对称轴x=1,故本选项正确故选D点评:本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键4二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象专题:压轴题分析:根据二次函数图象开口向上得到a0,再根据对称轴确定出b,根据与y轴的交点确定出c0,然后确定出一次函
18、数图象与反比例函数图象的情况,即可得解解答:解:二次函数图象开口方向向上,a0,对称轴为直线x=0,b0,与y轴的正半轴相交,c0,y=ax+b的图象经过第一三象限,且与y轴的负半轴相交,反比例函数y=图象在第一三象限,只有B选项图象符合故选B点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键5将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()Ay=3(x2)21By=3(x2)2+1Cy=3(x+2)21Dy=3(x+2)2+1考点:二次函数图象与几何变换专
19、题:压轴题分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(2,1),所得抛物线为=3(x+2)21故选C点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键6二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x32101y323611则该函数图象的顶点坐标为()A(3,3)B(2,2)C(1,3)D(0,6)考点:二次函数的性质专题:压轴题分析:根据二次函数的对称性确定出二次函数的对称轴,然后解答即可解答:解:x=3和1时的函数值都是3相等,二次函数的对称
20、轴为直线x=2,顶点坐标为(2,2)故选B点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键7在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()ABCD考点:二次函数的图象;一次函数的图象分析:令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a0,然后确定出一次函数图象经过第一三象限,从而得解解答:解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a0,所以,一次函数y=ax+b经过第一三象限,所
21、以,A选项错误,C选项正确故选C点评:本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等8如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b24ac0;(2)c1;(3)2ab0;(4)a+b+c0,其中错误的有()A1个B2个C3个D4个考点:二次函数图象与系数的关系专题:压轴题分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:(1)图象与x轴有2
22、个交点,依据根的判别式可知b24ac0,正确;(2)图象与y轴的交点在1的下方,所以c1,错误;(3)对称轴在1的右边,1,又a0,2ab0,正确;(4)当x=1时,y=a+b+c0,正确;故错误的有1个故选:A点评:本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用二填空题(共6小题)92013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图)若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为5米
23、考点:二次函数的应用分析:根据羽毛球飞出的水平距离即为抛物线与x轴正半轴交点到原点的距离,进而求出即可解答:解:当y=0时,0=x2+x+,解得:x1=1,x2=5,故羽毛球飞出的水平距离为5m故答案为:5点评:此题主要考查了二次函数的应用,根据已知得出图象与x轴交点坐标是解题关键10如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DEAB,点E到直线AB的距离为7m,则DE的长为48m考点:二次函数的应用专题:压轴题分析:首先建立平面直角坐标系,设AB与y轴交于H,求出OC的长,然后设设该抛
24、物线的解析式为:y=ax2+k,根据题干条件求出a和k的值,再令y=0,求出x的值,即可求出D和E点的坐标,DE的长度即可求出解答:解:如图所示,建立平面直角坐标系设AB与y轴交于点H,AB=36,AH=BH=18,由题可知:OH=7,CH=9,OC=9+7=16,设该抛物线的解析式为:y=ax2+k,顶点C(0,16),抛物线y=ax2+16,代入点(18,7)7=1818a+16,7=324a+16,324a=9,a=,抛物线:y=x2+16,当y=0时,0=x2+16,x2=16,x2=1636=576x=24,E(24,0),D(24,0),OE=OD=24,DE=OD+OE=24+2
25、4=48,故答案为48点评:本题主要考查二次函数综合应用的知识点,解答本题的关键是正确地建立平面直角坐标系,此题难度一般,是一道非常好的试题11抛物线y=ax2+bx+c(a0)经过点(1,2)和(1,6)两点,则a+c=2考点:待定系数法求二次函数解析式分析:把两点的坐标代入二次函数的解析式,通过+,得出2a+2c=4,即可得出a+c的值解答:解:把点(1,2)和(1,6)分别代入y=ax2+bx+c(a0)得:,+得:2a+2c=4,则a+c=2;故答案为:2点评:此题考查了待定系数法求二次函数的解析式,解题的关键是通过+,得到2a+2c的值,再作为一个整体出现,不要单独去求a,c的值12
26、如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是2k考点:二次函数的性质专题:压轴题分析:根据AOB=45求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可解答:解:由图可知,AOB=45,直线OA的解析式为y=x,联立消掉y得,x22x+2k=0,=(2)2412k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,点B的坐标为(2,
27、0),OA=2,点A的坐标为(,),交点在线段AO上;当抛物线经过点B(2,0)时,4+k=0,解得k=2,要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是2k故答案为:2k点评:本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键13如图,抛物线的顶点为P(2,2),与y轴交于点A(0,3)若平移该抛物线使其顶点P沿直线移动到点P(2,2),点A的对应点为A,则抛物线上PA段扫过的区域(阴影部分)的面积为12考点:二次函数图象与几何变换专题:压轴题分析:根据平移的性质得出四边形APPA是平行四边
28、形,进而得出AD,PP的长,求出面积即可解答:解:连接AP,AP,过点A作ADPP于点D,由题意可得出:APAP,AP=AP,四边形APPA是平行四边形,抛物线的顶点为P(2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P(2,2),PO=2, AOP=45,PP=22=4,AD=DO=3=,抛物线上PA段扫过的区域(阴影部分)的面积为:4=12故答案为:12点评:此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP是解题关键14如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=
29、于点B、C,则BC的长值为6考点:二次函数图象上点的坐标特征专题:压轴题分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度解答:解:抛物线y=ax2+3与y轴交于点A,A点坐标为(0,3)当y=3时,=3,解得x=3,B点坐标为(3,3),C点坐标为(3,3),BC=3(3)=6故答案为6点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单三解答题(共10小题)15已知是x的二次函数,求m的值和二次函数的解析式考点:二次函数的定义专题:存在型分析:先根据二次函数的定
30、义求出m的值,再把m的值代入函数的解析式即可解答:解:是x的二次函数,解得m=3或m=1,此二次函数的解析式为:y=6x2+9或y=2x24x+1点评:本题考查的是二次函数的定义,即一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数16已知二次函数y=ax2+bx+c的图象如图所示:(1)这个二次函数的解析式是y=x22x;(2)当x=3或1时,y=3;(3)根据图象回答:当x0或2时,y0考点:二次函数的图象分析:(1)易知顶点为(1,1);那么可设顶点式y=a(x1)21再把(0,0)代入求a(2)把y=3代入抛物线解析式即可(3)函数值大于0,指x轴上方的函数
31、图象所对应的x的取值解答:解:(1)由图可知顶点坐标为(1,1),设y=a(x1)21,把点(0,0)代入,得0=a1,即a=1,所以y=(x1)21=x22x(2)当y=3时,x22x=3,解得x=3或x=1(3)由图可知,抛物线与x轴两交点为(0,0),(2,0),开口向上,所以当x0或x2时,y0点评:本题考查用待定系数法求二次函数解析式;会根据所给的函数值得到相应的自变量的值及取值17已知抛物线y=x2+2x+2(1)该抛物线的对称轴是x=1,顶点坐标(1,3);(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;xy(3)若该抛物线上两点A(x1,y1),B(
32、x2,y2)的横坐标满足x1x21,试比较y1与y2的大小考点:二次函数的性质;二次函数的图象;二次函数图象上点的坐标特征专题:压轴题;图表型分析:(1)代入对称轴公式和顶点公式(,)即可;(2)尽量让x选取整数值,通过解析式可求出对应的y的值,填表即可;(3)结合图象可知这两点位于对称轴右边,图象随着x的增大而减少,因此y1y2解答:解:(1)x=1;(1,3)(2)x10123y12321(3)因为在对称轴x=1右侧,y随x的增大而减小,又x1x21,所以y1y2点评:二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的相关基本概念即可解题18如图
33、,已知抛物y=x2+bx+c过点C(3,8),与x轴交于A,B两点,与y轴交于点D(0,5)(1)求该二次函数的关系式;(2)求该抛物线的顶点M的坐标,并求四边形ABMD的面积考点:二次函数图象上点的坐标特征;二次函数的图象;待定系数法求二次函数解析式专题:计算题分析:(1)将C(3,8),D(0,5)两点坐标代入y=x2+bx+c中求b、c即可;(2)由二次函数解析式求M点坐标,根据S四边形ABMD=SADO+S梯形ODMN+SMNB求面积解答:解:(1)根据题意,得C=59+3b+c=8(2分)b=4,c=5(3分)这个二次函数的关系式为:y=x2+4x+5;(2)y=x2+4x+5的顶点
34、坐标为M(2,9),令y=0,x2+4x+5=0得x1=5,x2=1,A(1,0)B(5,0),S四边形ABMD=SADO+S梯形ODMN+SMNB=+=30点评:本题考查了二次函数解析式的求法,坐标系中求图形的面积关键是根据已知点的坐标,将四边形分割为两个三角形与一个梯形的面积和19如图,直角ABC中,C=90,点P为边BC上一动点,PDAB,PD交AC于点D,连接AP(1)求AC、BC的长;(2)设PC的长为x,ADP的面积为y当x为何值时,y最大,并求出最大值考点:二次函数的最值;勾股定理;相似三角形的判定与性质专题:综合题;压轴题分析:(1)在RtABC中,根据B的正弦值及斜边AB的长
35、,可求出AC的长,进而可由勾股定理求得BC的长;(2)由于PDAB,易证得CPDCBA,根据相似三角形得出的成比例线段,可求出CD的表达式,也就求出AD的表达式,进而可以AD为底、PC为高得出ADP的面积,即可求出关于y、x的函数关系式,根据所得函数的性质,可求出y的最大值及对应的x的值解答:解:(1)在RtABC中,得,AC=2,根据勾股定理得:BC=4;(3分)(2)PDAB,ABCDPC,;设PC=x,则,当x=2时,y的最大值是1 (8分)点评:此题主要考查了解直角三角形、相似三角形的判定和性质、二次函数的应用等知识20如图,在ABC中,C=90,AC=4cm,BC=5cm,点D在BC
36、上,且CD=3cm动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动过P作PECB交AD于点E,设动点的运动时间为x秒(1)用含x的代数式表示EP;(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值考点:二次函数的最值;平行四边形的性质;相似三角形的判定与性质专题:压轴题;动点型分析:(1)此题有两种解法:由于PECD,易证得APEACD,根据相似三角形的对应边的比相等,即可求得PE的长,根据A的正切值求解(2)当Q在线段CD上运动时,
37、0x2.4,若四边形PEDQ是平行四边形,则PE=DQ1,可用x表示出DQ1的长,联立PE的表达式列方程求出x的值(3)当Q在线段BD上运动时,四边形EPDQ是梯形,DQ、CP的长易求得,即可根据梯形的面积公式求得关于四边形EPDQ的面积与x的函数关系式,根据函数的性质即可得到四边形EPDQ的最大面积解答:解:(1)PECB,AEP=ADC,又EAP=DAC,AEPADC,(2分)=,=,(3分)(4分)(2)由四边形PEDQ1是平行四边形,可得EP=DQ1(5分)即x=3x,所以x=1.5(6分)0x2.4(7分)当Q在线段CD上运动1.5秒时,四边形PEDQ是平行四边形(8分)(3)S四边
38、形EPDQ2=(x+x3)(4x)(9分)=x2+x6=(x)2+,(10分)又2.4x4,(12分)当x=时,S取得最大值,最大值为(13分)点评:此题考查了相似三角形的判定和性质、平行四边形的性质、梯形的面积以及二次函数最值的应用;在求图形面积的最大或最小值时,通常转化为二次函数的最值问题进行求解21如图,抛物线y=a(x1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CDx轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点专题:计算题分析:(1)将A坐
39、标代入抛物线解析式,求出a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COBD的面积解答:解:(1)将A(1,0)代入y=a(x1)2+4中,得:0=4a+4,解得:a=1,则抛物线解析式为y=(x1)2+4;(2)对于抛物线解析式,令x=0,得到y=3,即OC=3,抛物线解析式为y=(x1)2+4的对称轴为直线x=1,CD=1,A(1,0),B(3,0),即OB=3,则S梯形OCDB=6点评:此题考查了利用待定系数法求二次函数解析式,二次函数的性质,以及二次函数与x轴的交点
40、,熟练掌握待定系数法是解本题的关键22某商家独家销售具有地方特色的某种商品,每件进价为40元经过市场调查,一周的销售量y件与销售单价x(x50)元/件的关系如下表:销售单价x(元/件)55 60 70 75 一周的销售量y(件)450 400 300 250 (1)直接写出y与x的函数关系式:y=10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?考点:二次函数的应用专题:压轴题分析:(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价进价)销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过10000元,求出进货量,然后求最大销售额即可解答:解:(1)设y=kx+b,由题意得,解得:,则函数关系式为:y=10x+1000;(2)由题意得,S=(x40)y=(x40)(10x+1000)=10x2+1400x40000=10(x70)2+9000,100,函数图象开口向下,对称轴为x=