1、Operations Research and Fuzziology 运筹与模糊学运筹与模糊学,2024,14(1),998-1004 Published Online February 2024 in Hans.https:/www.hanspub.org/journal/orf https:/doi.org/10.12677/orf.2024.141092 文章引用文章引用:杨教,龙纪安.基于改进小波阈值的条纹图像去噪研究J.运筹与模糊学,2024,14(1):998-1004.DOI:10.12677/orf.2024.141092 基于改进小波阈值的条纹图像去噪研究基于改进小波阈值的条
2、纹图像去噪研究 杨杨 教教,龙纪安龙纪安 贵州大学大数据与信息工程学院,贵州 贵阳 收稿日期:2023年12月21日;录用日期:2024年1月11日;发布日期:2024年2月29日 摘摘 要要 为消除条纹结构光图像中的噪声干扰,提出了基于小波变换的改进阈值函数,并结合条纹图像的特征为消除条纹结构光图像中的噪声干扰,提出了基于小波变换的改进阈值函数,并结合条纹图像的特征信息分布,选择合适的估计阈值,对条纹图像进行去噪。实验结果表明,小波阈值去除条纹图像的白信息分布,选择合适的估计阈值,对条纹图像进行去噪。实验结果表明,小波阈值去除条纹图像的白高斯噪声过程中,相比选用传统的阈值函数,本文提出的改进
3、阈值函数使峰值信噪比和结构相似度更高斯噪声过程中,相比选用传统的阈值函数,本文提出的改进阈值函数使峰值信噪比和结构相似度更高。高。关键词关键词 小波变换,条纹图像,图像去噪,尺度分解小波变换,条纹图像,图像去噪,尺度分解 Research on Fringe Image Denoising Based on Improved Wavelet Threshold Jiao Yang,Jian Long School of Big Data and Information Engineering,Guizhou University,Guiyang Guizhou Received:Dec.21s
4、t,2023;accepted:Jan.11th,2024;published:Feb.29th,2024 Abstract In order to eliminate the noise interference in the fringe structured light image,an improved threshold function based on wavelet transform was proposed,and combined with the feature in-formation distribution of the fringe image,an appro
5、priate estimation threshold was selected to denoise the fringe image.Experimental results show that in the process of removing white Gaus-sian noise from fringe images with wavelet threshold,the improved threshold function proposed in this paper makes the peak signal-to-noise ratio and structural si
6、milarity higher than the tradi-tional threshold function.杨教,龙纪安 DOI:10.12677/orf.2024.141092 999 运筹与模糊学 Keywords Wavelet Transform,Fringe Image,Image Denoising,Scale Decomposition Copyright 2024 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution Internat
7、ional License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.引言引言 结构光技术具有精度高、非接触和无视弱纹理等优点,在三维重建、特征提取和缺陷检测等场合具有非常广泛的应用。该方法主要通过捕获被测物体表面的条纹图像,然后提取图像信息来完成测量,因此,获取高质量的条纹图像是进行后续工作的前提1 2 3。目前,条纹图像的获取主要通过结构光相机,但该设备容易受到环境光干扰、随机激光散斑噪声和物体表面粗糙度等因素的影响,常常不能捕获高质量的条纹图像。因此,通过图像处理技术对条纹图像进行处理显得非常有必要。文献4中,提出利用图
8、像梯度增强方法、阈值分割方法和连通区域的思想去除条纹图像中的噪声。李春明等人5提出自适应的中值滤波算法和高斯滤波算法,有效地去除了条纹图像中的高斯噪声和椒盐噪声。小波变换具有优越的分解性能和多尺度传播特性,使其在图像中得到了广泛的应用。雷飞等人6引入收缩因子对 Donoho 阈值进行改进,提出了改进小波软硬阈值折衷算法,提高了小波阈值在水下图像中的去噪效果。文献7提出了一种通过修正通用阈值、改进阈值函数的去噪算法,在去噪过程中保留较多的信号扰动特征,但对受强噪声干扰的信号提取效果不太理想。田江龙等人8基于改进阈值法和双变量小波阈值函数的方法使去噪后的信号在过分平滑与边缘震荡之间达到了合理的平衡
9、。袁开明等人9提出了一种新的阈值选取算法,应用模拟退火算法计算最优解,提高了小波阈值的去噪性能。文献10中,提出了一种双参数阈值函数,通过加入调节参数使得改进的阈值函数能在软硬阈值函数之间相互切换。此外,针对传统小波阈值方法存在的文提,学者还提出了很多改进的阈值函数方案11-20。因此,选择合适的阈值函数有利于改善小波阈值的去噪效果,解决去噪不充分和图像信息丢失等问题是小波阈值去噪的重点和难点。本文提出了一种基于小波变换改进阈值函数的条纹图像去噪方法。在小波变换基础上,改进阈值函数,解决传统阈值函数不连续导致图像模糊的问题,提高了小波阈值的去噪效果。2.传统小波去噪传统小波去噪 小波去噪的基本
10、思想是将含早数据进行小波变换分解后,对不同频段信息采取对应的阈值进行噪声去除。传统的小波去噪方法主要有三种,分别为:非线性小波小波阈值去噪、小波变换尺度间相关去噪、小波变换模极大值去噪。1)小波变换模极大值去噪 小波变换模极大值去噪先将含噪数据进行多尺度分解,根据原始信号和干扰噪声在不同尺度上具有的不同传播特性,去除因为噪声产生的模极大值点,同时保留信号在该极大值带你的模,然后再用剩余的模极大值重构小波变换系数,最后重构信号。2)小波变换尺度空间相关去噪 信号小波变换多尺度分解后,尺度间会存在相关性,其主要表现在两个方面:一方面是在同一尺度中,比较重要的小波系数会集中在某些区域;另一方面是在不
11、同尺度空间中,与图像特征对应的小波系Open AccessOpen Access杨教,龙纪安 DOI:10.12677/orf.2024.141092 1000 运筹与模糊学 数之间存在相关性。在小波分解过程中,尺度相关性是固定不变的,其反映了图像分解后的空间多尺度性质。3)非线性小波阈值去噪 非线性小波阈值去噪是对数据的相关性进行去除,使信号的能量集中在小波分解后尺度空间中的少数几个小波系数中,而噪声不受影响依然分布在整个小波分解空间中,噪声能量对应大量的小波系数。对于待去噪的图像,小波变换对其进行分解,使得图像信号在小波分解空间中系数大、数量少,而噪声信号系数小、数量多和分布范围广。小波阈
12、值去噪的原理如图 1 所示,先估计阈值,然后对分解后小波系数与阈值比较,系数不小于阈值则根据阈值函数进行保留或缩放,反之则设置系数为零。最后对阈值过滤信号进行重构,即得小波阈值去噪图像。对小波阈值去噪分析可知,决定小波阈值的去噪效果主要为阈值函数和阈值决定,本文也将从这两方面进行改进。Figure 1.Wavelet threshold denoising process 图图 1.小波阈值去噪过程 2.1.阈值估计阈值估计 在小波阈值对图像去噪中,阈值估计会直接影响小波阈值的去噪效果,其值估计过小则图像噪声不能完全去除,若值估计过大重构图像将变模糊和出现伪边缘现象。当前在小波阈值中应用最多的
13、阈值函数估计方法是 VisuShrink 阈值,其对应的阈值 T 表达式为:2logTN=(1)其中,为信号的噪声标准差;N 为图像信号的总长度,其值等于图像宽度与高度的乘积。对应的噪声标准差由公式(2)得到:()0.6745median Det=(2)式中:Det 表示最小层的小波系数;median()表示中值。2.2.常用阈值函数常用阈值函数 小波阈值去噪效果还受小波系数影响,为了获得合适的小波系数,采用阈值函数对小波系数进行处理。在阈值的基础上采用不同的阈值函数对小波系数进行处理,用的比较多阈值函数是硬阈值函数和软阈值函数。假设小波系数为 w,阈值处理后的小波系数为 w,T 为阈值,则硬
14、阈值函数和软阈值函数的表达式为:1)硬阈值函数 ,0,j kj kj kj kwwTwwT=(3)杨教,龙纪安 DOI:10.12677/orf.2024.141092 1001 运筹与模糊学 2)软阈值函数 ()(),sgn,0,j kj kj kj kj kwwTwTwwT=(5)软阈值函数和硬阈值函数因其设置简单而应用比较广泛,但是两者都存在不足。软阈值函数在阈值点处是连续的,这也使得其不能较好地对高频系数进行收缩处理,从而导致图像信号得小波系数与实际小波系数产生误差,最终弱化图像特征信息,让目标细节特征模糊。硬阈值函数与软阈值函数相反,在阈值点处不连续,导致图像重构过程中产生环响、伪吉
15、布斯等现象。3.改进小波阈值去噪改进小波阈值去噪 3.1.阈值阈值 T 改进改进 在小波阈值中,2logTN=是目前用得最多的阈值计算公式,但是该阈值估计方法没有考虑信号和噪声在不同小波尺度上的变化,而且该方法与图像信号的尺寸相关。本文采用一种阈值估计方法:()2lnln1jNj=+(6)式中:是改进的阈值;j 是小波分解尺度。该阈值估计方法比较好的遵循了噪声随分解尺度增大而减少的规律,具有良好的去噪能力。3.2.改进阈值函数改进阈值函数 小波阈值法的最重要过程是对阈值的操作,只有设置合理的阈值滤除影响图像的干扰噪声,保留图像中的有效信息才可以获得理想的去噪结果。因此,选取合适的阈值函数进行阈
16、值的量化处理非常关键。为了弥补软阈值和硬阈值的缺点,本文提出了一种改进的小波阈值函数,改进的阈值函数表达式为:(),1,esgn,e0,j kj kj kj kwj kj kwwwww=(7)式中 为阈值,,j kw为分解得到 j 层第 k 个小波系数,,j kw为通过阈值函数后的估计小波系数。本文提出的改进阈值函数,可以更为灵活的控制阈值函数,在保证阈值函数的连续性,使函数更加靠近期望的位置,从而避免伪吉布斯现象的产生,达到降噪后信号保持原信号的平滑性的目的。4.实验结果与分析实验结果与分析 为了验证本文提出的改进方法的有效性,本文选去了不同噪声水平的高斯白噪声污染的条纹结构光图像进行实验,
17、并分别比较软阈值方法、硬阈值方法和本文改进算法的去噪结果。为了定量评价实验方法的去噪性能,本文使用峰值信噪比 PSNR 和结构相似度 SSIM 来反映虑噪后图像的噪声信息。杨教,龙纪安 DOI:10.12677/orf.2024.141092 1002 运筹与模糊学 本文实验结果如图 24 所示,图中 bd 分别为硬阈值方法、软阈值方法、本文提出算法。对比多个虑噪后图像可知,硬阈值方法对条纹图像去噪后零件的尖端处出现了模糊,而软阈值方法在去噪后的零件边缘处出现了部分信息的丢失,相对的本文算法在不同噪声强度的图像去噪信息保留较好,取得了较好的去噪结果。Figure 2.The denoising
18、 result plot with a noise intensity of 5 图图 2.噪声强度为 5 的去噪结果图 Figure 3.The denoising result plot with a noise intensity of 15 图图 3.噪声强度为 15 的去噪结果图 Figure 4.The denoising result plot with a noise intensity of 25 图图 4.噪声强度为 25 的去噪结果图 表 1 记录了图像通过实验方法虑噪后的 PSNR 和 SSIM 数据,从表中的数据可以发现利用新的阈值函数对条纹结构光图像进行去噪后,增大
19、了 PSNR 和 SSIM。由此可知,对于条纹图像采用小波阈值去噪时,阈值函数不同使得图像去噪效果不同,在客观评价指标上本文算法优于软阈值方法和硬阈值方法,不仅克服了软硬阈值函数的缺点,而且去噪效果也更好。Table 1.Evaluation indexes of denoising images 表表 1.去噪图像评价指标 噪声水平 滤波方法 PSNR/dB SSIM =5 Hard threshold 24.3253 0.7528 Soft threshold 33.0377 0.9322 Proposed method 34.5776 0.9327 杨教,龙纪安 DOI:10.12677
20、/orf.2024.141092 1003 运筹与模糊学 续表 =15 Hard threshold 24.1769 0.7476 Soft threshold 26.5836 0.7490 Proposed method 28.3664 0.8159 =25 Hard threshold 23.9439 0.7402 Soft threshold 26.8980 0.8080 Proposed method 27.0750 0.8618 5.结语结语 本文提出了一种改进阈值函数的小波阈值去噪方法,不需要额外添加控制因子的前提下,有效地解决了传统阈值函数不连续、图像模糊等问题。通过仿真实验,对
21、比分析了硬阈值方法、软阈值方法和本文方法对不同强度噪声污染的图像去噪,实验结果表明:改进阈值函数的去噪效果更好,其峰值信噪比和结构相似度两个指标相比软硬阈值函数都比较高,充分证明了该方法具有较好的去噪性能。参考文献参考文献 1 江永付,江开勇,林俊义.线结构光光条中心亚像素精确提取方法J.激光与光电子学进展,2015,52(7):185-191.2 纪运景,杜思月,宋旸,等.基于线结构光旋转扫描和光条纹修复的三维视觉测量技术研究J.红外与激光工程,2022,51(2):470-478.3 杨建华,杨雪荣,成思源,等.线结构光三维视觉测量中光条纹中心提取综述J.广东工业大学学报,2014,31(
22、1):74-78.4 赵博华,王伯雄,张金,等.粗糙金属表面光条中心提取方法J.光学精密工程,2011,19(9):2138-2145.5 李春明,王萌萌,刘海洋,等.精确的线结构光中心提取算法研究J.机械与电子,2017,35(6):29-31.6 雷飞,朱林,王雪丽.改进小波软硬折衷法在水下图像去噪中的应用J.计算机技术与发展,2017,27(11):150-153+158.7 王维博,董蕊莹,曾文入,等.基于改进阈值和阈值函数的电能质量小波去噪方法J.电工技术学报,2019,34(2):409-418.https:/doi.org/10.19595/ki.1000-6753.tces.1
23、71685 8 田江龙,屈卫东.基于小波去噪的阈值函数改进方法分析J.化工自动化及仪表,2017,44(3):243-247.9 袁开明,舒乃秋,孙云莲,等.基于阈值寻优法的小波去噪分析J.武汉大学学报(工学版),2015,48(1):74-80.https:/doi.org/10.14188/j.1671-8844-2015-01-014 10 赵薇,卓智海,张月霞.基于能量阈值的双参数阈值函数在生理信号降噪中的应用J/OL.兵工学报:1-8.http:/ 11 王知强.一种基于新阈值函数的小波图像去噪算法J.哈尔滨理工大学学报,2011,16(4):56-58.https:/doi.org
24、/10.15938/j.jhust.2011.04.012 12 陈映竹,王玉文,杨巍,等.一种新阈值函数的小波去噪算法研究J.通信技术,2017,50(7):1407-1411.13 杨兆昭,张峰川,张鑫鹏.基于改进小波阈值函数的仪表图像去噪方法研究J.自动化与仪表,2023,38(6):95-99.https:/doi.org/10.19557/ki.1001-9944.2023.06.020 14 齐晓辉,宋宛鸿,李文召.一种改进的小波去噪方法在 OTDR 中的应用J.光通信技术,2021,45(4):54-58.https:/doi.org/10.13921/ki.issn1002-5
25、561.2021.04.011 15 徐晗昕,俞斌杰,柳丽,等.改进小波阈值函数在手部姿态获取中的应用J.传感器与微系统,2023,42(11):165-168.https:/doi.org/10.13873/J.1000-9787(2023)11-0165-04 16 孙思燕,张伟雄,唐娉,等.基于小波阈值去噪与时频图像检测的信号调制识别技术J/OL.无线电工程:1-15.http:/ 侯云海,任钰.一种改进的小波阈值去噪算法J.长春工业大学学报,2023,44(4):345-352.杨教,龙纪安 DOI:10.12677/orf.2024.141092 1004 运筹与模糊学 https:
26、/doi.org/10.15923/22-1382/t.2023.4.09 18 杨兆昭,张峰川,张鑫鹏.基于改进小波阈值函数的仪表图像去噪方法研究J.自动化与仪表,2023,38(6):95-99.https:/doi.org/10.19557/ki.1001-9944.2023.06.020 19 邓廷鹏,张贵仓.新小波阈值函数在图像去噪中的研究应用J.现代电子技术,2023,46(9):55-60.https:/doi.org/10.16652/j.issn.1004-373x.2023.09.011 20 吴超,张胜,陈建飞.一种新型小波阈值函数下的毫米波图像去噪J.计算机仿真,2022,39(9):239-242+313.