收藏 分销(赏)

薪酬满意度研究.doc

上传人:人****来 文档编号:3335361 上传时间:2024-07-02 格式:DOC 页数:10 大小:109.54KB
下载 相关 举报
薪酬满意度研究.doc_第1页
第1页 / 共10页
薪酬满意度研究.doc_第2页
第2页 / 共10页
薪酬满意度研究.doc_第3页
第3页 / 共10页
薪酬满意度研究.doc_第4页
第4页 / 共10页
薪酬满意度研究.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、基于贝叶斯网络的公司高级管理人员的薪酬满意度分析王冬鑫青岛科技大学 经管学院【摘要】以Heneman提出的薪酬满意度的几个考察维度为参考变量,将贝叶斯网络引入到薪酬满意度的分析中,构建了贝叶斯网络模型,并通过数据学习对薪酬满意度进行了预测和诊断,取得了较好的效果。【关键词】贝叶斯网络;薪酬满意度;预测;诊断Compensation satisfaction analysis based on bayes net for senior managerWang dong-xin (College of Economics and Management, Qingdao University of

2、Science and Technology, Qingdao 266061, Shandong)【abstract】Introduce bayes net to the analysis of compensation satisfaction by the reference variables which is put forward by Heneman, build the bayes net model, realize forecast and diagnose of compensation satisfaction through date studying,and the

3、simulation shows that this model works well.【key words】bayes net; compensation satisfaction; forecast; diagnose一 引言在我国,随着资本市场的不断发展,上市公司逐年增加,结构不断优化,经营规模也逐渐扩大,这无疑就需要很多拥有各方面能力的高级管理人员来对公司的生产经营进行管理,最大程度的增加股东财富。高级管理人员已经成为企业的核心竞争力不可缺少的因素,对高管人员激励不当容易给企业造成不可挽回的损失。企业留住人才有很多的途径,如富有人性的福利政策、宽松和谐的工作环境、业主与员工的有效沟通、

4、高效的培训机制等。但是根据目前我国经济发展所处的阶段、社会成员的生活水平等因素来看,薪酬对人才的吸引和稳定作用仍旧是第一位的。对薪酬的满意度是员工的一种情感体验,对薪酬满意度高的员工更有动力回报组织,他们积极地投入到工作中,不但尽心尽力地完成本职工作,而且会表现出一些超越其职责要求的行为;对薪酬满意度低的员工,会更频繁地缺勤,对工作本身的不满,甚至逃避工作,更有可能辞职跳槽。但是薪酬满意度又并不仅仅局限于薪酬的绝对值的高低。改革开放30余年来,中国企业高管薪酬逐步提高,近年来更呈现快速增长趋势。中国在全体高管人数增长18.63%的情况下,全体高管成员的薪酬总额增长幅度高达111.23%。但是高

5、薪酬增长率并未带来与之相应的高薪酬满意度,这就造成了企业资源的浪费。因此对于薪酬满意度的研究更显得尤为重要。国外学者对高管薪酬的研究起步早,而且研究的结论比较丰富。我国对高管薪酬的研究与国外相比,在研究方法、研究深度以及研究成果方面都存在很大差距,研究理论还有待加深。以往的研究多局限于探讨哪些因素会对薪酬满意度产生影响,也有一些研究用因子分析法分析了各个影响因素对于薪酬满意度影响程度的大小,但是很少有研究从薪酬满意度的预测和诊断的角度出发来进行研究。本文以Heneman等人对薪酬满意度的维度的研究为基础,将概率论与图论结合起来,构建贝叶斯网络图,通过引入专家知识,实现贝叶斯网络学习。最终建立起

6、来的模型突破了以往的研究,具有以下两种功能:1.在已知了各个影响薪酬满意度的父节点的满意度的情况下可以推测出子节点的满意程度,即因果推理。2.在已知公司高管对薪酬满意程度时,通过贝叶斯概率寻找到到底是哪些因素更可能对满意程度引起了较大影响,即诊断推理,从而有针对性的进行改进。二 研究概念的界定(一)企业高级管理人员根据委托代理理论,所有者是委托人,企业的经营管理团队是代理人,委托代理关系下的激励指的是企业所有人如何激励经营管理团队。因此,论文中所指高级管理人员是企业经营管理团队成员,他们参与经营管理并领取企业薪酬,这些人员组成企业的高层管理团队,负责企业的重大决策和日常经营。这不同于经济学和财

7、务学意义上的高级管理人员。孙海法等在研究高层管理团队时对高层管理团队有一个明确的界定,这个界定与本研究的研究对象界定是一致的,因此本研究采用孙海法、伍晓奕(2003)关于高层管理团队的概念界定:高层管理团队是指公司高层经理的相关小群体,包括CEO、总经理、副总经理以及直接向他们汇报工作的高级经理。(二)薪酬满意度薪酬满意度(compensation satisfaction简称CS)是员工对薪酬的一种态度,不同的研究人员对薪酬满意度理解不同。薪酬满意度的研究始于公平理论的提出者美国学者亚当斯(Adams,1965),亚当斯认为薪酬满意度应该是作为一个单维的、持续的有正值与负值的变量。他指出薪酬

8、满意度的起因是由于个人对薪酬给付公平的感觉,这种感觉是来自于知觉和比较的一种复杂过程。他认为,员工会对自己与他人的得失之比进行比较。如果得失之比相似,员工就会对自己的薪酬感到满意;如果得失之比不同,员工就有可能对自己的薪酬感到不满。1971年,劳勒(Lawler)把薪酬满意度定义为个体感知他们获得的薪酬与他们期望应该获得的薪酬之间比较的感觉,而当个体感知获得的薪酬比他们期望应该获得的薪酬少的时候就会产生不满意。1985年,赫尼曼(Heneman)等提出多维结构的薪酬满意度概念,研究者基本都认可多维度的观点。他们认为薪酬满意度是员工对所获得的薪酬数量与薪酬管理体系的情感反应,它包括薪酬水平、福利

9、、加薪、薪酬结构与管理四个方面的满意度。1991年,米斯迪和莱恩(Micedi,Lane)将薪酬满意度定义为:“薪酬满意度是个人对于薪酬(pay)正向或负向的情感总和。并把薪酬(pay)的概念扩展到包括工资(wages)和薪给(salaries)以及福利(benefits)。综合以上关于薪酬满意度的定义,本研究采用修正后的米斯迪和莱恩(Micodi,Lane,1991)薪酬满意度定义:“薪酬满意度是个人对于薪酬(涵盖外在薪酬和内在薪酬的多个方面)的正向或负向的情感总和。”三 贝叶斯网络的构建一般情况下,有三种不同的方式来构造贝叶斯网:1.由领域专家确定贝叶斯网络的变量(有时也成为影响因子)节点

10、,然后通过专家的知识来确定贝叶斯网络的结构,并指定它的分布参数。这种方式构造的贝叶斯网完全在专家的指导下进行,由于人类获得知识的有限性,导致构建的网络与实践中积累下的数据具有很大的偏差;2.由领域专家确定贝叶斯网络的节点,通过大量的训练数据,来学习贝叶斯网的结构和参数。这种方式完全是一种数据驱动的方法,具有很强的适应性。而且随着人工智能、数据挖掘和机器学习的不断发展,使得这种方法成为可能。如何从数据中学习贝叶斯网的结构和参数,已经成为贝叶斯网络研究的热点。3.由领域专家确定贝叶斯网络的节点,通过专家的知识来指定网络的结构,而通过机器学习的方法从数据中学习网络的参数。这种方式实际上是前两种方式的

11、折中,当领域中变量之间的关系较明显的情况下,这种方法能大大提高学习的效率。综上我们可以看出,在由领域专家确定贝叶斯网络的节点后,构造贝叶斯网的主要任务就是学习它的结构和参数。很显然,学习结构和参数不是完全独立的:一方面节点的条件概率很大程度上依赖于网络的拓扑结构;另一方面,网络的拓扑结构直接由联合概率分布的函数来决定。然而,一般情况下,我们还是把这两个方面分开来进行。这是因为,带有太多连接的复杂网络结构所需观测的参数较多,而为使获得这些参数达到某种信任程度所需的数据量随着参数数目的增加而迅速增长,并且复杂的结构需要太大的存储空间及冗长繁琐的计算过程才能产生预测和解释。因此,为使贝叶斯网作为知识

12、模型是可用的,在学习过程中致力于寻找一种最简单的网络结构是非常必要的,这种简单的结构模型称之为稀疏网络,它含有最少可能的参数及最少可能的依赖关系。(一)模型假设 Heneman和Schwab认为,薪酬满意度包括薪酬水平满意度、薪酬提升满意度、薪酬结构满意度和福利满意度四个维度。威廉姆斯等(2008)的研究发现薪酬满意度包括薪资和福利,福利满意度包括三个维度:福利水平满意度、福利决定满意度、福利管理满意度、薪资类包括四个维度:薪资水平满意度、薪资结构满意度、薪资提升满意度、变动薪资满意度。本文对Heneman和Schwab的观点进行了修改,将薪酬提升满意度归结到内在薪酬满意度中,对于薪酬满意度的

13、考察从以下四个维度进行:薪酬水平满意度、福利水平满意度、薪酬结构满意度和内在薪酬满意度。其中,薪酬水平满意度包含三个维度:个人薪酬水平、公司薪酬水平、行业薪酬水平,将福利满意度分为两个维度:福利水平和福利管理,将薪酬结构满意度分成两个维度:风险倾向和企业文化,将内在薪酬满意度分成三个维度:决策自由度、工作挑战性、工作丰富性、职业发展前景。(二)网络节点的选取结合Heneman、Schwab、叶广峰、孙海法(2010)等人的研究,本文选取的薪酬影响因素包括:个人薪酬水平(Personal compensation degree, PC)、公司内薪酬水平(Company compensation

14、degree, CC)、行业内薪酬水平(Vocation compensation degree , VC)、薪酬水平满意度(Degree of satisfaction, DS);福利水平(Benefit level, BL)、福利管理(Benefit management , BM)、福利满意度(Degree of satisfaction of benefit level, DB);企业文化(Enterprise culture, EC)、风险倾向(Risk propensity, RP)、薪酬结构满意度(Degree of satisfaction of compensation st

15、ructure, DC);决策自由度(Degree of freedom of decision, DF)、工作挑战性(Work challenging, WC)、工作丰富性(Work richness, WR)、职业的发展前景(career development, CD)、内在薪酬满意度(Degree of satisfaction of internal pay, DI)、薪酬满意度(Compensation satisfaction,CS)。这些因素综合决定了薪酬满意度。(三) 网络拓扑结构的确定对于n个变量的数据样本,可能组成的网络结构有n!种,要对每种网络结构进行计算是不可能的,那

16、么就需要选择一个合适的网络结构。贝叶斯网络利用独立因果影响关系解决了这个难题。贝叶斯网络中三种独立关系:条件独立、上下文独立及因果影响独立。三种独立关系旨在把联合概率分布分解成更小的因式,从而达到节省存储空间、简化知识获取和领域建模过程、降低推理过程中计算复杂性的目的,因此可以说独立关系是贝叶斯网络的灵魂。贝叶斯网络结构的构建方法前面已经介绍过,本文采用的方法是:由领域专家确定贝叶斯网络的变量节点,然后通过专家知识来确定贝叶斯网络的结构。这种方法的优点是:它提供了一种自然地表示因果信息的方法,即将一个节点的父节点理解为该节点的直接原因。得出的结构模型如下图所示: 表3-1薪酬满意度网络结构图T

17、able3-1 The BN structure of compensation satisfaction个人薪酬水平公司薪酬水平行业薪酬水平福利水平福利管理风险倾向企业文化决策自由度工作挑战性工作丰富性职业发展前景薪酬水平满意度福利满意度薪酬结构满意度内在薪酬满意度薪酬满意度(四)节点状态的确定确定了网络的拓扑结构后,接下来要为每个节点确定有几种状态。节点状态的确定可以由专家根据经验知识获得,也可以根据节点数据本身的特点进行分析。本文采用专家知识,对每个节点规定状态如下:表3-2节点状态Table 3-2 State of node(五)贝叶斯网络学习贝叶斯网络的参数学习实质上是在已知网络结

18、构的条件下,来学习每个节点的概率分布表。早期贝叶斯网的概率分布表是由专家知识指定的,然而这种仅凭专家经验指定的方法,往往与观测数据产生较大的偏差。当前比较流行的方法是从数据中学习这些参数的概率分布,这种数据驱动的学习方法具有很强的适应性。数据指的是领域变量的一组观测值:,根据数据的观测状况,可分为完备数据集和不完备数据集。完备数据集中的每个实例,都具有完整的观测数据,不完备数据集是指对某个实例的观测有部分缺值或观测异常的情况。对不完备数据的学习,一般要借助于近似的方法,如Monte-Carlo方法,Gaussian逼近,以及EM(期望-极大化)算法求ML(极大似然)或MAP(最大后验概率)等。

19、尽管有成熟的算法,但其计算开销是比较大的。(六)贝叶斯网络推理1.因果推理经过训练后的贝叶斯网络可以利用概率传播来进行因果推理。例如:用P(DS)表示事件薪酬水平满意度为满意的概率。在已知个人薪酬水平(PC)公司薪酬水平(CC)行业薪酬水平(VC)的节点状态时,P(DS)的概率为:同样的,其他节点的概率推理过程类似,在已知父节点的状态时可以推算出子节点状态的概率。2.诊断推理诊断推理即在已知子节点状态推知其父节点状态概率的过程。即所谓的执果寻因。例如:用表示在福利满意度为满意的情况下,福利水平满意度为满意的概率。则:同样的,其他节点的概率推理过程类似,在已知子节点的状态时可以倒推出父节点状态的

20、概率。四 实证研究(一)条件概率学习本文以S公司为例,由30位专家对其薪酬满意度进行评价,1代表高、满意或者竞争型和风险;2代表低、不满意或者中庸型和风险规避。其评价结果如下表:表4-1专家评价意见Table 4-1 Expert opinion由于本文的先验分布符合共轭Dirichlet分布,因此当子节点只含有一个父节点时,其条件概率可以由下式求出:这里y有k个取值,为x的第i个取值,为先验信息,为数据D的观测值。当子节点含有多个父节点时,用表示=j时,=k的条件概率,表示变量的取值个数,表示所有父节点的状态总数,那么在参数独立性的假定下,每个变量和它的父状态=j服从Dirichlet分布:

21、在数据集D下的后验分布仍为Dirichlet分布:所以可用下式来计算条件概率: ()选择前28组数据对先验概率进行修正,得出后验概率,选择第29组数据用来验证因果推理,选择第30组数据用来验证诊断推理。得到的CPT表为:薪酬水平满意度的CPT表为:表4-2薪酬水平满意度CPT Table 4-2 CPT of the degree of satisfaction of salary level福利满意度的CPT表为:表4-3福利满意度CPTTable 4-3 CPT of degree of benefit level薪酬结构满意度的CPT表为:表4-4薪酬结构满意度CPTTable 4-4

22、CPT of degree of satisfaction of compensation structure内在薪酬满意度的CPT表为:表4-5内在薪酬满意度CPTTable 4-5 CPT of degree of satisfaction of internal pay薪酬满意度的CPT表为:表4-6薪酬满意度CPTTable 4-6 CPT of compensation satisfaction(二)因果推理根据第29组数据,在个人薪酬水平为高,公司薪酬水平为高,行业薪酬水平为低的条件下,由CPT表推测出薪酬水平满意度为满意的概率为0.71,第29组数据显示薪酬水平满意度为满意根据第

23、29组数据,在福利水平为高,福利管理为不满意的条件下,由CPT表推测出福利满意度为满意的概率为0.7,第29组数据显示福利满意度为满意根据第29组数据,在风险倾向为风险规避型,企业文化为竞争型的条件下,由CPT表推测出薪酬结构满意度为满意的概率为0.5,第29组数据显示薪酬结构满意度为满意根据第29组数据,在决策自由度为不满意,工作挑战性为不满意,工作丰富性为不满意,职业发展前景为满意的条件下,由CPT表得出内在薪酬满意度为满意的概率为0.5,第29组数据显示内在薪酬满意度为不满意根据第29组数据,在薪酬水平满意度为满意,福利满意度为满意,薪酬结构满意度为满意,内在薪酬满意度为满意的条件下,由

24、CPT表得出薪酬结构满意度为满意的概率为0.78,第29组数据显示薪酬满意度为满意。因果推理的结果基本与事实符合,说明根据该模型的因果推理较令人满意。作者在与s公司的经理的面谈中了解到,s公司的经理对公司薪酬的薪酬水平和福利水平满意度一般,但是对企业文化的认同感和内在薪酬满意度较高,对职业的发展前景、工作的丰富性很满意,薪酬满意度总体来说比较满意,与得出的结论较为吻合。在新招聘高管人员时,可以对未来招聘人员的薪酬满意度有一个大概的推测,如果满意的概率较高则更有可能招聘到优秀的高管人员,如果推测满意度较低,那么说明招聘将很困难或者即使招聘到了优秀的高管也可能会因为薪酬满意度很低而很快离职。(三)

25、诊断推理以福利满意度倒推福利水平为例,根据第30组数据,福利满意度为满意的情况下,可以倒推出福利水平为高的概率为0.87,第30组数据显示福利水平为高。其推理过程如下:其他节点状态的推理与之类似。诊断推理的结果基本与事实符合,说明根据该模型的诊断推理也较令人满意。S公司在2011年招聘销售主任,总经理分析该岗位的薪酬水平较高,福利水平较低,但是工作丰富性和挑战性较强,职业前景一般,并且公司会筛选与公司文化认同感较强的人为销售主任。根据贝叶斯网络推理可知未来销售主任会对薪酬较为满意成功招聘到销售主任3个月后,作者与销售主任面谈得知销售主任对当前薪酬满意度为较满意,与推理结论较为吻合当高管人员对薪

26、酬感到不满意的时候,可以用诊断推理推算出各个父节点不满意的概率,找到不满意概率较大的因素,进行针对性的改进,从而使高管人员对薪酬最终达到满意的结果。五 小结贝叶斯网络用图形的方法描述数据间的相互关系,语义清晰,可理解性强,有助于利用数据间的因果关系进行预测分析。将贝叶斯网络引入到薪酬满意度的模型中可以有效的对高管人员的薪酬满意度进行预测和诊断。本文以S公司为例,对该模型的因果推理和诊断推理进行了验证,证明贝叶斯网络的应用效果比较令人满意。【参考文献】1罗萍,雷媛媛,施俊琦浅议薪酬满意度的研究进展J,现代商业,2010,092叶广峰企业高管薪酬满意度的影响因素和效应研究D,20103宫秀军贝叶斯学习理论及其应用研究D,20024黄友平贝叶斯网络研究D,20055贺伟,龙立荣薪酬满意度的维度及其作用研究评述J,软科学,2009,23(11)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 管理财经 > 薪酬管理

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服