收藏 分销(赏)

隧道设计衬砌计算范例结构力学方法.doc

上传人:w****g 文档编号:3327468 上传时间:2024-07-02 格式:DOC 页数:39 大小:1.18MB
下载 相关 举报
隧道设计衬砌计算范例结构力学方法.doc_第1页
第1页 / 共39页
隧道设计衬砌计算范例结构力学方法.doc_第2页
第2页 / 共39页
隧道设计衬砌计算范例结构力学方法.doc_第3页
第3页 / 共39页
隧道设计衬砌计算范例结构力学方法.doc_第4页
第4页 / 共39页
隧道设计衬砌计算范例结构力学方法.doc_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约 260km , 西至康定约 97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运送能力, 制约了川藏少数民族地区的经济发展。二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原

2、川藏公路相接, 总长 8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达成三级公路标准, 满足了川藏线二郎山段的全天候行车。1.2工程地质条件 1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边沿山区分水岭地带,从属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特性。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平

3、沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的 “ v ” 型沟 谷,纵坡顺直比降大,局部受岩性构造影 响,形成陡崖跌水。1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有 “康风雅雨” 之称。全年分早季和雨季。夏、秋两季受东进 的太平洋季风和南来的印度洋季风的控制,降雨 量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。据沪定、天全两县2023(1960-1980年)气候资料,数年平均气温分别为16.6 和15.1,沪定略高于天全,数年平均降雨量分

4、别为636.8 mm和1730.0mm,数年平均蒸发量分别为1578.6和924.2mm,每年8级以上大风日数分别为14天和3天,沪定相对大风更多、更强烈。据调查访问,二郎山东坡季节冰冻线约在海拔2200m以上,积雪线海拔1900m左右,积雪时限11月上旬至次年4月,西坡季节冰冻线约为海拔2600m-2800m季节积雪线海拔2300m-2500m左右。二郎山东西两侧分别属于青衣江和眠江支流 一 大渡河两大水系。东坡龙胆溪为青衣江支流天全河发源地,西坡潘沟,属大渡河支流。本区溪沟均受大气降水(雨、雪)和地下水的补给,其中重要为大气降水补给。因而,亦具有一般山区沟河 “易涨易落”之特点。1.2.3

5、 地质状况隧道穿越地层以志留系、 泥盆系浅海滨海相碳酸盐和碎屑岩为主,出口端上覆地层为崩坡积层, 黄灰、黑灰色块石土或块石、 碎石土, 由山前滑坡、 崩塌等坡积、 崩积物及少量坡面洪流形成的洪积物组成, 重要成份为岩屑砂砾、 角砾、 亚粘土等。由于区内岩层软硬相间, 故地形呈东陡西缓的单面山特性, 东坡为逆向坡, 西坡为顺向坡。二郎山断裂带从隧址区西北侧通过, 距隧道出口约350400m , 该断裂是龙门山断裂带的南西延长部分,为区内控制性主干断裂, 在其影响下区内沿其旁侧发育一系列次级分支羽状断裂, 在隧道轴线上共穿越断层11条, 多属压性压扭性质, 断层带不宽, 影响带较小, 胶结较好。隧

6、址区地震基本烈度为8 度。1.3隧址区初始应力条件通过采用水压致裂法在7 个钻孔中的地应力测量, 得出隧道最大水平主应力(max )的总体方向为N 74W , 与隧道轴线夹角 31左右, 隧址区地应力场具有以下分布特性:(1)大约位于标高2200 m 处, 为山体应力与构造应力的分界线, 分界线以上垂直应力(Rv )占主导地位; 分界线以下水平主应力值明显增长并占主导地位, 隧道顶板正好位于分界线偏下。(2)水平地应力(Hmax、hmin )在垂直方向上的分布随深度增长而增大, 在横向上由隧道两端向山体内部逐渐增长, 即隧道中部地应力最大, Hmax =54.37M Pa。(3)在同一深度内硬

7、质岩类显示高应力值, 软岩类显示低应力值。二郎山隧道(主洞)长4176 m , 以II、III类围岩为主,长3004 m,占71.93%; IV类围岩长821 m , 占19.66%; V类围岩长351 m,占8.41%。2隧道设计2.1设计标准设计行车速度: 40 km/ h (三级公路) ;隧道建筑限界: 隧道净宽 9.0 m (7.5 m + 20.75 m) , 限高5 m设计荷载: 汽车20 级, 挂车100;设计小时交通量: 441辆/h;行车方式: 单洞双向行驶;卫生标准: 正常运营CO允许浓度为15010- 6, 阻塞及救灾短时间内(15 min)为25010- 6;烟雾允许浓

8、度0.009 m - 1。2.2平面线形、纵断面设计2.2.1 平面线形隧道的平面线形应根据地质、地形、路线走向、通风等因素拟定隧道的平曲线线形。直线便于施工;曲线段施工难度较大,除测量上难度加大以外,例如模板台车载曲线段施工很困难,有超高时就更困难。结合隧址区地形、 地貌及工程地质与水文地质条件、 地应力大小与方向、 经济性, 拟定出了隧道轴线位置, 同时还兼顾了两端接线的衔接,隧道平面线形拟定为直线型。隧道设计里程 K259+ 036 K263+ 212, 长 4 176 m,进口标高2 180.31 m , 出口标高 2182.01 m。2.2.2纵断面设计隧道内纵断面线形应考虑行车安全

9、性、营运通风规模、施工作业效率和排水规定,隧道纵坡不应小于0.3%,一般情况不应大于3%;受地形等跳警限制时,高速公路、一级公路的中、短隧道可适当加大,但不宜大于4%;短于100m的隧道纵坡可与该公路隧道外路线的指标相同。隧道内的纵坡形式,一般采用单向坡;本地下水发育的长隧道、专长隧道可采用双向坡。纵坡变更的凸形竖曲线和凹形竖曲线的最小半径和最小长度应符合规范规定(公路隧道设计规范JTGD70-2023,表4.3.4)。二郎山隧道属专长隧道,因此纵坡形式采用“人”字坡式,进口侧上坡, 坡度0.5% (长2023 m ) , 出口侧下坡, 坡度0.41% (长2176 m )。2.3 横断面设计

10、2.3.1 建筑限界隧道横断面设计重要是对隧道净空的设计。隧道净空是指隧道衬砌的内轮廓线所包围的空间。隧道净空是根据“建筑限界”拟定的。“限界”是一种规定的轮廓线,这种轮廓线以内的空间是保证车辆安全运营所必需的,是建筑物不得侵入的一种限界。公路隧道建筑限界涉及车道、路肩、路缘带、人行道等的宽度及车道、人行道的净高。下图为公路隧道建筑限界横断面组成宽度。根据 公路工程技术标准, 隧道建筑限界采用净宽9.0 m , 限高4.5m。隧道内轮廓通过比选拟定采用单心圆断面, 隧道总高度6.1m。2.3.2 紧急停车带长、专长隧道应在行车方向的右侧设立紧急停车带。双向行车隧道,其紧急停车带应双侧交错设立。

11、紧急停车带的宽度,包含右侧向宽度应取3.5m,长度应取40m,其中有效长度不得小于30m。紧急停车带的设立间距不宜大于750m。停车带的路面横坡,长隧道可取水平,专长隧道可取0.5%1.0%或水平。二郎山隧道应设紧急停车带,双向交错布置,紧急停车带间距700m,有效长度30m,横向坡度取1%。紧急停车带的建筑限界、宽度和长度见图2-3.2。 图2-3.1 建筑界(单位:cm)a)宽度构成及建筑限界 (单位:cm) b)长度(单位:cm)图2-3.2 紧急停车带的建筑限界、宽度和长度2.3.3 内轮廓设计隧道内轮廓设计除符合隧道建造限界的规定外,还应满足洞内路面、排水设施、装饰的需要,并为通风、

12、照明、消防、监控、营运管理等设施提供安装控件,同时考虑围岩变形、施工方法影响的预留富裕量,使拟定的断面形式及尺寸符合安全、经济、合理的原则。二郎山隧道内轮廓采用单心圆方案,半径R1=4.8m,R2=1m,R3=9.6m,1=108,2=67,3=12,IV、V级围岩设立仰拱,内轮廓线如图2-3.3。a)一般内轮廓线b) 含紧急停车带内轮廓线图2-3.3 内轮廓线(单位:m)3 洞门设计公路隧道设计规范(JTGD70-2023)对洞门有如下规定:1洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运规定,通过经济、技术比较拟定;2隧道应遵循“早进洞、晚出洞”的原则,不得大

13、挖大刷,保证边坡及仰坡的稳定;3洞口边坡、仰坡顶面及其周边,应根据情况设立排水沟,并和路基排水系统综合考虑布置。3.1 洞门位置选择公路隧道设计规范(JTGD70-2023)规定洞口位置的拟定应符合下列规定:1洞口的边坡及仰坡必须保证稳定。有条件时,应贴壁进洞;条件限制时,边坡及仰坡的设计开挖最大高度可按表2-4.1控制。表2-4.1 洞口边、仰坡控制高度围岩分级I-IIIIIIV边、仰坡坡率贴壁1:0.31:0.51:0.51:0.751:0.751:11:1.251:1.51:1.25高度(m)15202520251518201518注:设计开挖高度系从路基边沿算起2洞口位置应设于山坡稳定

14、、地质条件好处。3位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。 4跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充足比选拟定。5漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析拟定。6洞口设计应考虑与附近的地面建筑及地下埋设物的互相影响,必要时采用防范措施。7洞口边坡、仰坡应根据实际情况加固防护措施,有条件时应优先采用绿化护坡。8当洞口处有塌方、落石、泥石流等时,应采用清刷、延伸洞口、设立明洞或支挡结构物等措施。3.2 洞门形式选择标准 洞门形式的选择应适应地形、地质的需要,同时考虑施工方法和施工需要。一般地形等高线与线路中线斜交角度在45。

15、65。之间,地面横坡较陡,地质条件好,无落石掉块现象时,可选择斜交洞门;当斜交角度大于65。时,地面横坡较陡,或一侧地形凸出,可考虑用台阶洞门;当斜交角度小于45。时,地面横坡较陡,边仰坡刷方较高,有落石掉块掉块威胁运营安全时,考虑接长明洞。3.3 洞门拟定二郎山隧道穿越地层以志留系、 泥盆系浅海滨海相碳酸盐和碎屑岩为主,出口端上覆地层为崩坡积层, 黄灰、黑灰色块石土或块石、 碎石土, 由山前滑坡、 崩塌等坡积、 崩积物及少量坡面洪流形成的洪积物组成, 重要成份为岩屑砂砾、 角砾、 亚粘土等。因此洞门采用翼墙式洞门。4隧道结构设计与计算4.1 初期支护二郎山隧道采用复合式衬砌支护,初期支护采用

16、喷锚支护,由喷射混凝土、锚杆、钢筋网和钢架等支护形式组合使用,根据不同围岩级别区别组合。锚杆支护采用全长粘结锚杆。由工程类比法,结合公路隧道设计规范(JTG D70-2023),初期支护喷射混凝土材料采用C20级混凝土,支护参数取值如表2-5.1。表4-1.1初期支护参数围岩级别喷射砼厚度(cm)锚杆(m)钢筋网钢拱架拱墙仰拱位置长度间距杆体材料II8局部2.21.522砂浆(药卷)锚杆III10拱、墙2.41.522砂浆(药卷)锚杆局部6.525x25IV15拱、墙3.01.025中空注浆锚杆拱、墙6.525x25拱、墙格栅钢架18IV20拱、墙4.01.025中空注浆锚杆拱、墙(双层)6.

17、525x25拱、墙、仰拱格栅钢架18I4.2 二次衬砌 二次衬砌采用现浇模筑钢筋混凝土,混凝土采用C25级,钢筋采用HRB335级刚,运用荷载结构法进行衬砌内力计算和验算。二次衬砌厚度设立如表2-5.2。 表4-1.2二次衬砌混凝土厚度 (单位:cm)围岩级别拱、墙混凝土厚度仰拱混凝土厚度II30III35IV3535V4545 4.3 围岩衬砌内力计算规范(JTGD70-2023)规定:I-V级围岩中,复合式衬砌的初期支护应重要按工程类比法设计。其中IV、V级围岩的支护参数应通过设计拟定,计算方法为地层结构法。所以取IV级围岩为计算对象。4.3.1 拟定衬砌尺寸图2-5.1 IV围岩衬砌拟定

18、图内轮廓线半径外轮廓线半径m, C25级防腐钢筋混凝土拱墙35cm,预留变形量5cm,C20喷射混凝土防腐混凝土厚14cm,拱顶截面厚0.5m,墙底截面厚0.5m。4.3.2 衬砌材料参数围岩为IV级,根据公路隧道设计规范表A.0.4-1取值得:围岩重度,围岩的弹性抗力系数,。衬砌材料采用钢筋混凝土,根据公路隧道设计规范表5.2.1,表5.2.2,表5.2.4取值得:重度,弹性模量,轴线抗压强度标准值,轴心抗拉强度标准值。内轮廓半径,内径所画圆曲线的终点截面与竖直轴的夹角外轮廓半径,拱轴线半径,拱轴线各段圆弧中心角:,4.3.3荷载拟定 1)围岩竖向均布压力: (4.2)式中:s-围岩类别,此

19、处s=4;-围岩容重,此处=21KN/m3-跨度影响系数, =1+i(lm-5),毛洞跨度Lm=10.60+20.05=10.70m,其中0.05m为一侧平均超挖量. Lm=515m时,i=0.1,此处=1+0.1(10.70-5)=1.570。所以,有q=0.4524-1211.570118.6920kpa此处超挖回填层重忽略不计。2)围岩水平均布压力:e0.25q0.25118.692029.6730kpa 4.3.4半拱轴线长度S及分段轴心线长S4.3.4.1.计算半拱轴线长度S级分块轴线长度S。(单位m)分段长度:m4.3.4.2.各分块接缝(截面)中心几何要素1.与竖直夹角校核: 角

20、度闭合差,因墙底面水平,计算衬砌内力时用2. 接缝中心点坐标计算表2-3 各截面中心几何要素截面()sincosxy000100115.0262 0.2593 0.9658 1.3093 0.1727 230.0523 0.5008 0.8656 2.5290 0.6789 345.0785 0.7081 0.7061 3.5758 1.4840 460.1046 0.8669 0.4984 4.3780 2.5330 575.1308 0.9665 0.2566 4.8809 3.7541 690.1569 1.0000 -0.0027 5.0499 5.0638 7105.1831 0.9

21、651 -0.2619 4.8737 6.3726 890 104.2132 7.4271 半轴计算图如图2-5图2-5 衬砌结构计算图示4.3.5计算位移4.3.5.1.单位位移用用辛普生法近似计算,按计算列表进行。单位位移的计算见表2-4。单位位移值计算如下:校核:闭合差0计算结果对的。表2-4 单位位移计算表截面I1/Iy/Iy2/I(y+1)2/I00.01042 96.0000 0.0000 0.0000 96.0000 10.01042 96.0000 16.5768 2.8624 132.0159 20.01042 96.0000 65.1765 44.2498 270.6028

22、 30.01042 96.0000 142.4648 211.4189 592.3485 40.01042 96.0000 243.1670 615.9392 1198.2732 50.01042 96.0000 360.3940 1352.9567 2169.7448 60.01042 96.0000 486.1276 2461.6669 3529.9220 70.01042 96.0000 611.7711 3898.5816 5218.1237 80.01042 96.0000 713.0016 5295.5342 6817.5374 864.0000 2638.6793 13883.2

23、097 20234.5682 4.3.5.2. 载位移积极荷载在基本结构中引起的位移A.每一楔块上的作用力竖向力: 式中 bi衬砌外缘相邻两截面之间的水平投影长度,由图2.5量得: 水平压力: 式中:hi衬砌外缘相邻两截面之间的竖直投影长度,由图2-5量得:自重力: 式中:di接缝i的衬砌截面厚度。注:计算G8时,应使第8个楔块的面积乘h。作用在各楔块上的力均列人表2-5,各集中力均通过相应图形的形心。表2-5 单元集中作用力截面bi(m)hi(m)di (m)QEG0000.500000011.3741 0.1812 0.5000 163.0947 5.3767 16.5465 21.278

24、0 0.5313 0.5000 151.6884 15.7653 16.5465 31.1007 0.8450 0.5000 130.6443 25.0737 16.5465 40.8420 1.1009 0.5000 99.9387 32.6670 16.5465 50.5278 1.2816 0.5000 62.6456 38.0289 16.5465 60.1775 1.3746 0.5000 21.0678 40.7885 16.5465 71.3736 0.5000 040.7588 16.5465 80.9890 0.5000 029.3466 16.5465 B外荷载在基本结构中

25、产生的内力楔块上备集中力对下一接缝的力臂由图2-5中量得,分别记为。内力按下式计算(见图2-6)图2-6 单元积极荷载弯矩: ()轴力:式中:、相邻两截面中心点的坐标增量,按下式计算: 表2-6 计算过程表(一)截面aqagae-Qaq-Gag-Eae00000001 0.6222 0.6490 0.3321 -101.4775 -10.7387 -1.7856 2 0.5157 0.5932 0.4820 -78.2257 -9.8154 -7.5989 3 0.3732 0.4970 0.5990 -48.7564 -8.2236 -15.0191 4 0.2043 0.3667 0.67

26、51 -20.4175 -6.0676 -22.0535 5 0.0223 0.2113 0.7049 -1.3970 -3.4963 -26.8066 6 -0.1613 0.0415 0.6873 3.3982 -0.6867 -28.0339 7 0-0.1306 0.6213 02.1610 -25.3235 8 0-0.4577 0.4945 07.5733 -14.5119 表2-7 计算过程表(二)截面i-1(Q+G)i-1Exy-xi-1(G+Q)-yi-1EMp0000000001001.3093 0.1727 00-114.0018 2179.6412 5.3767 1.2

27、197 0.5062 -219.1131 -2.7220 -431.4768 3347.8761 21.1420 1.0468 0.8051 -364.1442 -17.0211 -884.6413 4495.0669 46.2157 0.8023 1.0490 -397.1789 -48.4794 -1378.8382 5611.5521 78.8827 0.5029 1.2211 -307.5305 -96.3249 -1814.3935 6690.7442 116.9116 0.1691 1.3097 -116.7729 -153.1220 -2109.6108 7728.3585 15

28、7.7001 -0.1762 1.3088 128.3696 -206.3958 -2210.7995 8744.9051 198.4590 -0.6605 1.0545 492.0131 -209.2720 -1934.9969 表2-8 计算过程表截面sincos(G+Q)Esin(G+Q)cosENP000 1 0000010.2593 0.9658 179.6412 5.3767 46.5738 5.1929 41.3809 20.5008 0.8656 347.8761 21.1420 174.2129 18.2997 155.9132 30.7081 0.7061 495.0669

29、 46.2157 350.5420 32.6346 317.9074 40.8669 0.4984 611.5521 78.8827 530.1765 39.3166 490.8599 50.9665 0.2566 690.7442 116.9116 667.6139 30.0010 637.6129 61.0000 -0.0027 728.3585 157.7001 728.3513 -0.4318 728.7831 70.9651 -0.2619 744.9051 198.4590 718.9004 -51.9772 770.8776 81.0000 0.0000 761.4516 227

30、.8056 761.4516 0.0000 761.4516 基本结构中,积极荷载产生弯矩的校核为: 另一方面从附表5.2中得到1934.9969闭合差:C.积极荷载位移计算过程见表2-9。 经校核,闭合差表2-9 、计算过程截面Mp01/Iy/IMp0/IMp0y/IMp0(1+y)/I0096.0000 0.0000 0001-114.0018 96.0000 16.5768 -10944.1740 -1889.7814 -12833.9554 2-431.4768 96.0000 65.1765 -41421.7767 -28122.1555 -69543.9322 3-884.6413

31、 96.0000 142.4648 -84925.5685 -126030.2358 -210955.8043 4-1378.8382 96.0000 243.1670 -132368.4702 -335287.8921 -467656.3623 5-1814.3935 96.0000 360.3940 -174181.7731 -653896.5520 -828078.3251 6-2109.6108 96.0000 486.1276 -202522.6370 -1025539.9863 -1228062.6233 7-2210.7995 96.0000 611.7711 -212236.7

32、520 -1352503.1517 -1564739.9037 8-1934.9969 96.0000 713.0016 -185759.6992 -1379655.8619 -1565415.5611 -1044360.8507 -4902925.6167 -5947286.4674 4.3.5.3载位移单位弹性抗力及相应的摩擦力引起的位移A.各接缝处的抗力强度抗力上零点假定在接缝3,3=45.0785=b;最大抗力值假定在接缝5,5=75.1308=h;最大抗力值以上各截面抗力强度按下式计算: 查表2-3,算得: =0 =0.5781 = 最大抗力值以上各截面抗力强度按下式计算:式中:所考

33、察截面外缘点到h点的垂直距离; 墙脚外缘点到h点的垂直距离。由图2-5中量得: =1.3104m,=2.684m, =3.673m 则:按比例将所求得的抗力绘于图2-5上B.各楔块上抗力集中力Ri按下式近似计算: 式中:楔块i外缘长度,可通过量取夹角,用弧长公式求得, 的方向垂直于衬砌外缘,并通过楔块上抗力图形的形心。C.抗力集中力与摩接力的合力Ri 按下式计算: (5.62)式中:围岩与衬砌间的摩擦系数,此处取0.2。 则: (5.63)其作用方向与抗力集中力的夹角=arctan=11.3099。由于摩擦阻力的方向与衬砌位移的方向相反,其方向向上。画图时,也可取切向:径向1:5的比例求出合力

34、的方向。 的作用点即为与衬砌外缘的交点。将的方向线延长,使之交于竖直轴,量取夹角K,将分解为水平与竖直两个分力: (5.64)以上计算列入表2-10。表2-10 弹性抗力及摩擦力计算截面(n)1/2(i-1+i)S外R(n)ksinkcoskRH(n)RV(n)300000000040.5781 0.2891 1.3893 0.4095 66.5950 0.9177 0.3972 0.3758 0.1627 51.0000 0.7891 1.3893 1.1179 79.7425 0.9440 0.1781 1.0553 0.1991 60.8727 0.9364 1.3893 1.3266

35、93.4188 0.9982 -0.0596 1.3242 -0.0791 70.4660 0.6694 1.3893 0.9483 108.1183 0.9504 -0.3110 0.9013 -0.2949 80.0000 0.2330 1.1206 0.2663 118.4040 0.8796 -0.4757 0.2342 -0.1267 D.计算单位抗力及其相应的摩接力在基本结构中产生的内力弯矩:轴力: 式中:rji力Rj至接缝中心点Aj的力臂,由图2-5量得。计算见表2-11及表2-12。M0计算表 表2-11截面R4=0.4095hR5=1.1179h6=1.3266h7=0.94

36、83h8=0.2663hM0r4i- R4r4i(h)r5i-R5r5i(h)r6i- R6r6i(h)r7i-R7r7i(h)r8i- R8r8i(h)40.4686 -0.1919 -0.1919 51.7890 -0.7326 0.6334 -0.7081 -1.4407 63.0581 -1.2523 1.9523 -2.1825 0.7521 -0.9977 -4.4325 74.1876 -1.7149 3.2088 -3.5871 2.0690 -2.7447 0.7808 -0.7404 -8.7871 84.8945 -2.0044 4.1288 -4.6156 3.1611

37、 -4.1935 1.9884 -1.8856 0.9482 -0.2525 -12.9515 N0计算表 表2-12截面()sincosRV(h)sinRV(h)RH(h)cosRH(h)N0(h)460.1046 0.8669 0.4984 0.1627 0.1410 0.3758 0.1873 -0.0463 575.1308 0.9665 0.2566 0.3618 0.3496 1.4311 0.3672 -0.0176 690.1569 1.0000 -0.0027 0.2827 0.2827 2.7553 -0.0075 0.2902 7105.1831 0.9651 -0.26

38、19 -0.0122 -0.0118 3.6566 -0.9577 0.9459 890.0000 1.0000 0.0000 -0.1389 -0.1389 3.8908 0.0000 -0.1389 E. 单位抗力及相应摩擦力产生的载位移计算见表2-13。单位抗力及摩擦力产生的载位移计算表 表2-13截面M01/Iy/I(1+y)M0/IM0y/IM0(1+y)/I积分系数1/34-0.1919 96.0000 243.1670 3.5330 -18.4223 -46.6635 -65.0858 2 5-1.4407 96.0000 360.3940 4.7541 -138.3071 -5

39、19.2192 -657.5263 4 6-4.4325 96.0000 486.1276 6.0638 -425.5233 -2154.7770 -2580.3003 2 7-8.7871 96.0000 611.7711 7.3726 -843.5655 -5375.7183 -6219.2838 4 8-12.9515 96.0000 713.0016 8.4271 -1243.3457 -9234.4528 -10477.7984 1 -2669.1638 -17330.8308 -19999.9946 闭合差。4.3.5.4 墙底(弹性地基上的刚性梁)位移计算单位弯矩作用下墙底截面产生的转角积极荷载作用下墙底截面产生的转角 单位抗力及相应摩擦力作用下的转角 4.3.6解力法方程衬砌矢高,计算力法方程的系数为:以上将单位抗力及相应摩擦力产生的位移乘以,即为被动荷载的载位移校核单位位移值:将以上单位抗力及相应摩擦力产生的位移乘以,即为被动荷载的载位移。解得: 解得: 式中:其中:4.3.7计算积极荷载和被动荷载(h=1)分别产生的衬砌内力计算公式为:计算过程见表2-13和表2-14。 主、被动荷载作用下衬砌弯矩计

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 环境建筑 > 隧道涵洞

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服