1、姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 期末考试 线性代数与几何 试卷A(试卷号:1 时间120分钟,总分100)注意事项:1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上( 密封线装订区内、草稿纸上答题均无效); 3考试形式:闭卷; 4. 本试卷共 五 大题,满分100分,考试时间120分钟。题 号一二三四五总分得 分评卷人一、 计算(12分)1;解 2 解 二、 求解非齐次方程组(要求用导出组的基础解系表示其通解)(13分)解 对増广矩阵作初等行变换如下等价方程组为,令即得,从而三、 (12分)设
2、向量可被向量组线性表出,但不能被向量组线性表出。证明:向量组与向量组等价。证 因为向量可被向量组线性表出,所以存在不全为零的数使得。又不能被向量组线性表出,从而,否则矛盾。于是有,进而向量组的每一个向量都可被向量组线性表出,而且向量的每一个向量都也可被向量组线性表出,从而这两个向量组等价。四、 (12分)求过点,且平行于平面和的直线的对称式方程。解 平面和的法向量分别为,从而取所求直线的方向向量为直线的对称式方程为。五、 (20分)设有实对称矩阵1、写出所对应的二次型;2、用正交变换法化该二次型为标准型,并写出所用的正交矩阵。解 1、所对应的二次型;2、由,得特征根。由,取为特征向量,已经正交
3、的了(不然就要用施密特方法),单位化有;由,取为特征向量,单位化有从而用正交矩阵为的正交变换化该二次型为标准型。六、 (12分)当为何值时,线性方程组有惟一解?无解?有无穷多解?有解时求出解。解 对増广矩阵作初等行变换如下从而当时,方程组无解;当时,方程组有唯一解;这时,当时,方程组无限多组解,此时,等价方程组,令得为任意常数。七、 (12分)设向量组。求向量组的秩和一个极大线性无关组,并将其余向量由此极大无关组线性表出。解 ,从而该向量组的秩为3,一个极大线性无关组为,其余向量由此极大无关组线性表出为。八、(7分)设均为矩阵。若对任意维列向量:都有。证明证 由于对任意维列向量:都有,现在特殊
4、化,取阶单位阵的个列向量,也有。从而姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 期末考试 线性代数与几何 试卷A(试卷号:1 时间120分钟,总分100)注意事项:1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上( 密封线装订区内、草稿纸上答题均无效); 3考试形式:闭卷; 4. 本试卷共 五 大题,满分100分,考试时间120分钟。题 号一二三四五总分得 分评卷人八、 计算(12分)1;2 九、 求解非齐次方程组(要求用导出组的基础解系表示其通解)(13分)十、 (12分)设向量可被向量组线性表出,但不能被向量组线性表出。证明:向量组与向量组等价。十一、 (12分)求过点,且平行于平面和的直线的对称式方程。十二、 (20分)设有实对称矩阵1、写出所对应的二次型;2、用正交变换法化该二次型为标准型,并写出所用的正交矩阵。十三、 (12分)当为何值时,线性方程组有惟一解?无解?有无穷多解?有解时求出解。十四、 (12分)设向量组。求向量组的秩和一个极大线性无关组,并将其与向量由此极大无关组线性表出。十五、 (7分)设均为矩阵。若对任意维列向量:都有。证明。 微积分(上) 试卷A第 6 页 共 6 页