1、新课标人教版课件系列新课标人教版课件系列高中数学选修选修4411.1.1平面直角坐标系2(1)学会用坐标法来解决几何问题。学会用坐标法来解决几何问题。(2)能用变换的观点来观察图形之间)能用变换的观点来观察图形之间的因果联系,知道图形之间是可以类的因果联系,知道图形之间是可以类与类变换的。与类变换的。(3)掌握变换公式,能求变换前后的)掌握变换公式,能求变换前后的图形或变换公式。图形或变换公式。教学目标教学目标3教学重点:应用坐标法的思想及掌教学重点:应用坐标法的思想及掌握变换公式。握变换公式。教学难点:掌握坐标法教学难点:掌握坐标法的解题步骤的解题步骤与应用,总结体会伸缩变换公式与应用,总结
2、体会伸缩变换公式的应用。的应用。通过典型习题的讲解、通过典型习题的讲解、剖析,及设置相关问题引导学生剖析,及设置相关问题引导学生思考来突破难点。思考来突破难点。45一平面直角坐标系的建立6思考思考:声响定位问题声响定位问题某某中中心心接接到到其其正正东东、正正西西、正正北北方方向向三三个个观观测测点点的的报报告告:正正西西、正正北北两两个个观观测测点点同同时时听听到到一一声声巨巨响响,正正东东观观测测点点听听到到巨巨响响的的时时间间比比其其他他两两个个观观测测点点晚晚4s,已已知知各各观观测测点点到到中中心心的的距距离离都都是是1020m,试试确确定定该该巨巨响响的的位位置置。(假假定定当当时
3、时声声音音传传播播的的速速度度为为340m/s,各各 相相 关关 点点 均均 在在 同同 一一 平平 面面 上上)7y yx xB BA AC CP Po o8 以接报中心为原点以接报中心为原点O,以,以BA方向为方向为x轴,建立轴,建立直角坐标系直角坐标系.设设A、B、C分别是西、东、北观测点,分别是西、东、北观测点,设设P(x,y)为为巨巨响响为为生生点点,由由B、C同同时时听听到到巨巨响响声声,得得|PC|=|PB|,故故P在在BC的的垂垂直直平平分分线线PO上上,PO的的方方程程为为y=x,因因A点点比比B点点晚晚4s听听到爆炸声,到爆炸声,y yx xB BA AC CP Po o则
4、则 A(1020,0),B(1020,0),C(0,1020)故故|PA|PB|=3404=13609由双曲线定义知由双曲线定义知P点在以点在以A、B为焦点的为焦点的双曲线双曲线 上,上,10答答:巨巨响响发发生生在在接接报报中中心心的的西西偏偏北北450距中心距中心 处处.用用y=x代入上式,得代入上式,得 ,|PA|PB|,11 解决此类应用题的关键:解决此类应用题的关键:1、建立平面直角坐标系、建立平面直角坐标系2、设点、设点(点与坐标的对应)(点与坐标的对应)3、列式、列式(方程与坐标的对应)(方程与坐标的对应)4、化简、化简5、说明、说明坐坐 标标 法法12例例1.1.已知已知ABC
5、ABC的三边的三边a,b,ca,b,c满足满足b b2 2+c+c2 2=5a=5a2 2,BE,CF,BE,CF分别为分别为边边AC,CFAC,CF上的中线,建立适当的平面直角坐标系探究上的中线,建立适当的平面直角坐标系探究BEBE与与CFCF的位置关系。的位置关系。(A)FBCEOyx以以ABC的顶点为原点的顶点为原点,边边AB所在的直线所在的直线x轴,建立直角轴,建立直角坐标系,由已知,点坐标系,由已知,点A、B、F的的坐标分别为坐标分别为解:解:A(0,0),B(c,0),F(,0).因此,因此,BEBE与与CFCF互相垂直互相垂直.13建系时,根据几何特点选择适当的直角坐标系。建系时
6、,根据几何特点选择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为)如果图形有对称中心,可以选对称中心为坐标原点;坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐)如果图形有对称轴,可以选择对称轴为坐标轴;标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。)使图形上的特殊点尽可能多的在坐标轴上。具体解答过程见书本具体解答过程见书本P4你能建立不同的直角坐标系解决这个问题吗?比较你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?标系应注意什么问题?14xO 2 y=sinxy=s
7、in2x二二.平面直角坐标系中的伸缩变换平面直角坐标系中的伸缩变换思考:思考:(1 1)怎样由正弦曲线)怎样由正弦曲线y=sinxy=sinx得到曲线得到曲线y=sin2x?y=sin2x?15 在正弦曲线在正弦曲线y=sinx上任取一点上任取一点P(x,y),保持纵坐标不变,保持纵坐标不变,将横坐标将横坐标x缩为原来的缩为原来的 ,就得到正弦曲线,就得到正弦曲线y=sin2x.通常把通常把 叫做平面直角坐标系中的一个压缩变换。叫做平面直角坐标系中的一个压缩变换。1坐标对应关系为:坐标对应关系为:1 上述的变换实质上就是一个坐标的压缩变换,即:上述的变换实质上就是一个坐标的压缩变换,即:设设P
8、(x,y)P(x,y)是平面直角坐标系中任意一点,是平面直角坐标系中任意一点,保持纵坐标保持纵坐标不变,将横坐标不变,将横坐标x x缩为原来缩为原来 ,得到点得到点16(2)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲得到曲线线y=3sinx?写出其坐标变换。写出其坐标变换。O 2 y=sinxy=3sinxyx17在正弦曲线上任取一点在正弦曲线上任取一点P(x,y),保持横坐标),保持横坐标x不变,不变,将纵坐标伸长为原来的将纵坐标伸长为原来的3倍,就得到曲线倍,就得到曲线y=3sinx。(2)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sinx?写出写出其坐标变换。
9、其坐标变换。通常把通常把 叫做平面直角坐标系中的一个坐标伸叫做平面直角坐标系中的一个坐标伸长变换。长变换。22设点设点P(x,y)经变换得到点为)经变换得到点为18(3)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲得到曲线线y=3sin2x?写出其坐标变换。写出其坐标变换。O 2 y=sinxy=3sin2xyx19 在正弦曲线在正弦曲线y=sinx上任取一点上任取一点P(x,y),保持纵坐,保持纵坐标不变,将横坐标标不变,将横坐标x缩为原来的缩为原来的 ,在此基础上,在此基础上,将纵坐标变为原来的将纵坐标变为原来的3倍,就得到正弦曲线倍,就得到正弦曲线y=3sin2x.设点设点P(x,y
10、)经变换得到点为)经变换得到点为通常把通常把 叫做平面直角坐标系中的叫做平面直角坐标系中的一个坐标伸缩变换。一个坐标伸缩变换。3(3)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sin2x?写出其坐标变换。写出其坐标变换。320定义:设定义:设P(x,y)是平面直角坐标系中任意一点,是平面直角坐标系中任意一点,在变换在变换的作用下,点的作用下,点P(x,y)对应对应 称称 为为平面直角坐标系中的伸缩变换平面直角坐标系中的伸缩变换。4注注 (1)(2)把图形看成点的运动轨迹,平面图形)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;的伸缩变换可以用坐标伸缩变
11、换得到;(3)在伸缩变换下,平面直角坐标系不变,)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。在同一直角坐标系下进行伸缩变换。21例例2:在直角坐标系中,求下列方程所对应的图形经过:在直角坐标系中,求下列方程所对应的图形经过伸缩变换伸缩变换后的图形。后的图形。(1)2x+3y=0;(2)x2+y2=1221.在同一直角坐标系下,求满足下列图形的伸缩变换:在同一直角坐标系下,求满足下列图形的伸缩变换:曲线曲线4x2+9y2=36变为曲线变为曲线232.在同一直角坐标系下经过伸缩变换在同一直角坐标系下经过伸缩变换 后,后,曲线曲线C变为变为 ,求曲线,求曲线C的方程并画出的方程并画出图形。图形。2425答案:y3sin2x26课堂小结:课堂小结:(1)体会坐标法的思想,应用坐标)体会坐标法的思想,应用坐标法解决几何问题;法解决几何问题;(2)掌握平面直角坐标系中的伸缩)掌握平面直角坐标系中的伸缩变换。变换。2728