1、花山中心学校花山中心学校 庄倩男庄倩男12圆的有关性质被广泛运用于工农业生产,交通运输、圆的有关性质被广泛运用于工农业生产,交通运输、和土木建筑等等,内容比较广泛,具有综合基础教育和土木建筑等等,内容比较广泛,具有综合基础教育价值。本节课价值。本节课垂直于弦的直径垂直于弦的直径则是圆的轴对称性则是圆的轴对称性的具体化。它将垂直等问题在圆中进一步延续和深化。的具体化。它将垂直等问题在圆中进一步延续和深化。在数学知识的学习上,它能使学生经历观察、实验、在数学知识的学习上,它能使学生经历观察、实验、猜想、证明等数学学习过程,能使学生有条理的清晰猜想、证明等数学学习过程,能使学生有条理的清晰地阐述自己
2、的观点。在应用数学知识,建立数学模型地阐述自己的观点。在应用数学知识,建立数学模型的能力上,能很好地启迪学生的探索灵感和创新意识。的能力上,能很好地启迪学生的探索灵感和创新意识。鉴于这种认识我认为本节课在教材中起着承上启下的鉴于这种认识我认为本节课在教材中起着承上启下的作用。既是对已学知识的应用和深化,又为学生以后作用。既是对已学知识的应用和深化,又为学生以后证明线段相等、角相等,弧相等开辟了新的思路。证明线段相等、角相等,弧相等开辟了新的思路。3知识与技能:知识与技能:使学生经历实际问题抽象为数学问题的过使学生经历实际问题抽象为数学问题的过程,理解圆的轴对称性,掌握垂径定理及其推论,并学会程
3、,理解圆的轴对称性,掌握垂径定理及其推论,并学会运用他们进入有关的计算证明,养成勇于探索敢于创新的运用他们进入有关的计算证明,养成勇于探索敢于创新的良好习惯,以及善于用数学方法分析解决数学问题的能力。良好习惯,以及善于用数学方法分析解决数学问题的能力。过程与方法:过程与方法:在定理形成的过程中,使学生从对圆的性在定理形成的过程中,使学生从对圆的性质由具体形象直观的认识,到学会用数学的思维方式去观质由具体形象直观的认识,到学会用数学的思维方式去观察分析,用数学的方式表述出来。察分析,用数学的方式表述出来。情感态度:情感态度:通过创设引导学生主动参与的情境,激起学生强通过创设引导学生主动参与的情境
4、,激起学生强烈的好奇心和求知欲望,使学生在积极参与过程中获得成功的烈的好奇心和求知欲望,使学生在积极参与过程中获得成功的体验,体验数学充满着探索与创造,尽可能使每个学生都能得体验,体验数学充满着探索与创造,尽可能使每个学生都能得到充分的发展。到充分的发展。4教学重点:探究、发现、理解和掌握垂教学重点:探究、发现、理解和掌握垂径定理;径定理;教学难点:垂径定理的证明及它与几教学难点:垂径定理的证明及它与几个推论之间实质性的联系和应用。个推论之间实质性的联系和应用。5初三学生虽然有一定的理解力,但是在某初三学生虽然有一定的理解力,但是在某种程度上特别是平面几何问题,学生还是种程度上特别是平面几何问
5、题,学生还是以事物的直观形象为主,所以我以参与式以事物的直观形象为主,所以我以参与式探究教学法为主,以学生手中的圆形纸片探究教学法为主,以学生手中的圆形纸片为工具,利用微机辅助演示,使学习的主为工具,利用微机辅助演示,使学习的主要内容不是教师传授给学生的,而是以问要内容不是教师传授给学生的,而是以问题的形式间接呈现出来的,由学生动手操题的形式间接呈现出来的,由学生动手操作,观察自己去发现,然后内化为自己的作,观察自己去发现,然后内化为自己的知识结构的一部分,这样不仅可以唤起学知识结构的一部分,这样不仅可以唤起学生学习的欲望,调动其学习的积极性和主生学习的欲望,调动其学习的积极性和主动性。而且能
6、激发学生主动建构知识,体动性。而且能激发学生主动建构知识,体验意义,为学生的自由探究创造空间。验意义,为学生的自由探究创造空间。6 教教 学学 过过 程程提提 出出 问问 题题作作 业业 布布 置置学学 习习 反反 思思巩巩 固固 应应 用用解解 决决 问问 题题 分分 析析 问问 题题7问题问题 :你知道赵州桥吗:你知道赵州桥吗?它是它是13001300多年前我国隋代建造的石拱多年前我国隋代建造的石拱桥桥,是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形,它的跨度它的跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧的中点
7、到弦的距弧的中点到弦的距离离)为为7.2m7.2m,你能求出赵洲桥主桥拱的半径吗?你能求出赵洲桥主桥拱的半径吗?赵州桥主桥拱的半径是多少赵州桥主桥拱的半径是多少?37.4m37.4m7 7.2 2m m8圆是轴对称图形,任何一条直径所在直线都是它的对称轴。圆是轴对称图形,任何一条直径所在直线都是它的对称轴。图图1 1图图2 2O OO O9直径平分弦,并且直径平分弦,并且平分及平分及OABCDE垂径定理:垂径定理:垂直于弦的直径平分垂直于弦的直径平分弦,并且平分弦所对的两条弧弦,并且平分弦所对的两条弧平分弦(不是直径)的直径垂直于弦,并且平分弦平分弦(不是直径)的直径垂直于弦,并且平分弦所对的
8、两条弧所对的两条弧即即,10AE=BE,n由由 CD是直是直径径 CDAB可推得可推得AD=BD.AC=BC,CDAB,n由由 CD是直是直径径 AE=BE AC=BC,AD=BD.可推得可推得垂径定理:垂径定理:推论:推论:E117.2米米37.4米米BODACR12如图是一条排水管的截面。已知排水管如图是一条排水管的截面。已知排水管的半径的半径10cm,水面宽,水面宽AB=12cm。求。求水的最大深度水的最大深度.EDBAO13从以上题的求解中,注意到从以上题的求解中,注意到:1、解决有关弦的问题时往往需要做、解决有关弦的问题时往往需要做“垂直于弦的直径垂直于弦的直径”作为作为辅助线辅助线
9、;2、结合垂径定理与勾股定理可得:、结合垂径定理与勾股定理可得:圆的半径圆的半径R,圆心到弦的距离圆心到弦的距离d,弦长弦长a之间的关系式为:之间的关系式为:弦心距14如图,在如图,在 O中,中,AB、AC为互相垂直且相等的两条为互相垂直且相等的两条弦,弦,ODAB于于D,OEAC于于E,求证四边形,求证四边形ADOE是正方形是正方形DOABCE证明:证明:四边形四边形ADOE为矩形,为矩形,又又AC=AB AE=AD 四边形四边形ADOE为正方形为正方形.15中秋节就快到了,可小月牙只顾得玩忘记吃饭,中秋节就快到了,可小月牙只顾得玩忘记吃饭,到现在还是瘦瘦的,他多想快点胖起来,成为一到现在还
10、是瘦瘦的,他多想快点胖起来,成为一轮满月在十五的晚上去照亮每一个团圆的家庭啊!轮满月在十五的晚上去照亮每一个团圆的家庭啊!你能用所学知识,让它成为一轮圆月吗?你能用所学知识,让它成为一轮圆月吗?16本节课你本节课你学到了什学到了什么内容?么内容?你的收获你的收获和体会?和体会?17教材教材87-88页页1题、题、7题题 18垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论推论:(1)平分弦)平分弦(不是直径)(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;)弦的垂直平分线经过圆心,并且
11、平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧。)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧。习题 解答:(略)24.1.2垂直于弦的直径 在在O中中,CD是直径是直径,AB是弦是弦,CD AB,垂足为垂足为E。AEBE,ACBC,ADBD。垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。垂直于弦的直径平分弦,并且平分弦所对的两条弧。19这节课我在课堂教学结构,以突出学这节课我在课堂教学结构,以突出学生个性发展上做了一些有益的探讨和生个性发展上做了一些有益的探讨和尝试。体现了教师教学行为的转变,尝试。体现了教师教学行为的转变,创设情境,让学生主动参与;尝试探创设情境,让学生主动参与;尝试探讨,让学生探究质疑;适当点拨,让讨,让学生探究质疑;适当点拨,让学生开拓创新;恰当选题,让学生自学生开拓创新;恰当选题,让学生自我评价和反思;归纳体验,让学生把我评价和反思;归纳体验,让学生把知识纳入系统。使教材潜在的教育功知识纳入系统。使教材潜在的教育功能得到有效的开发,体现当前素质教能得到有效的开发,体现当前素质教育对课堂教学的要求。育对课堂教学的要求。2021