收藏 分销(赏)

由乙烯焦油制备锂离子电池负极材料用碳质前驱体的氧化反应机理与反应动力学.pdf

上传人:自信****多点 文档编号:3057168 上传时间:2024-06-14 格式:PDF 页数:13 大小:6.70MB
下载 相关 举报
由乙烯焦油制备锂离子电池负极材料用碳质前驱体的氧化反应机理与反应动力学.pdf_第1页
第1页 / 共13页
由乙烯焦油制备锂离子电池负极材料用碳质前驱体的氧化反应机理与反应动力学.pdf_第2页
第2页 / 共13页
由乙烯焦油制备锂离子电池负极材料用碳质前驱体的氧化反应机理与反应动力学.pdf_第3页
第3页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Cite this:NewCarbonMaterials,2024,39(2):354-366DOI:10.1016/S1872-5805(22)60597-3The oxidation reaction mechanism and its kinetics for a carbonaceousprecursor prepared from ethylene tar for use as ananode material for lithium-ion batteriesGUOTian-rui,CHENRong-qi,GAOWei,WANGYan-li,ZHANLiang*(State Key

2、 Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China)Abstract:TheoxidationreactionmechanismanditskineticsforethylenetarwereinvestigatedinordertoobtainasuitableanodematerialforLi-ionbatteries.Theoxidationofethylenetarwasdividedinto3stages(350550,55

3、0700and700900K)accordingtothethermogravimetriccurve.Torevealtheoxidationreactionmechanism,thecomponentsofthegasesevolvedatdifferentstageswereanalyzedbymassspectrometryandinfraredtechnology.Basedontheseresultsthereactionwasdividedinto4stages(323400,400605,605750and750860K)toperformsimulationcalculati

4、onsofthekinetics.Usingtheiso-conversionmethod(Coats-Red-fern)toanalyzethelinearregressionrates(R2)between17commonreactionkineticsmodelsandexperimentaldata,anoptimumre-actionkineticsmodelforexpressingtheoxidationofethylenetarwasdeterminedandtheresultswereasfollows.(1)Duringoxida-tion,thesidechainsofa

5、romaticcompoundsfirstreactwithoxygentoformalcoholsandaldehydes,leavingperoxy-radicalsonaro-maticrings.Subsequently,thearomaticcompoundswithperoxy-radicalsundergopolymerization/condensationreactionstoformlar-germolecules.(2)Afourth-orderreactionmodelwasusedtodescribethefirst3stagesintheoxidationproce

6、ss,andtheactivationenergiesare47.33,18.69and9.00kJmol1at323400,400605,605750K,respectively.Athree-dimensionaldiffusionmodelwasappliedtothefourthstageoftheoxidationprocess,andtheactivationenergyis88.37kJmol1at750860K.Ahighsofteningpointpitchwasalsoproducedforuseasacoatingofthegraphiteanode,andafterit

7、hadbeenappliedthecapacityretentionafter300cyclesincreasedfrom51.54%to79.07%.Key words:Ethylenetar;Oxidationreactionmechanism;Reactionkinetics;Carbonaceousprecursor;Lithium-ionbatteries1IntroductionFunctionalcarbonmaterialshavebeenplayinganimportantroleinelectricalapplications,thermalman-agement(e.g.

8、,heat conduction and insulation),en-ergystorage(e.g.,electrodematerials),environmentalprotection(e.g.,gas capture),and various otherfields14.Itiswellknownthathigh-softening-pointpetroleumpitchisanimportantcarbonaceousprecurs-or5.Forexample,petroleumpitchwithahighsoften-ingpointcanbeappliedasthecoati

9、ngmaterialtotheanodematerialsoflithium-ionbatteries,rawmateri-alsforpitch-basedcarbonfiberandpitch-basedspher-icalactivatedcarbon68.Amongthese,ethylene tar is an important re-sourceforpreparinghighsofteningpointpetroleumpitches910.Therawmaterialforethyleneproductionismainlynaphtha(atmosphericcrudeoi

10、lfractionwithaninitialdistillationpointof200C).TheCHbondandCCbondofnaphthaarebrokenathightemperatures(600800C)toproduceethyleneandpropylene.Meanwhile,olefins can also polymerizeandcyclizetoproducearomatichydrocarbons.There-fore,themaincomponentsofethylenetararemono-cyclic,polycyclic aromatic hydroca

11、rbons and heavyaromaticdistillates,whicharevaluableresourcesrichinaromatichydrocarbons.Asthebyproductofhydro-carbonscrackinginethyleneproduction(ca.15%inyield),ethylenetarisproducedinlargeamountseveryyearwiththeincreasingdemandforethylene.Thus,itisregardedasanidealmaterialforproducinghigh-qualitypit

12、ch.Toincreasethesofteningpointandcarbonyieldofsyntheticpitch1114,theairoxidationmethodhasbeenwidelyappliedtopreparehigh-qualitypitch1518.Several researchers11,13,19 have reported that the airoxidationmethodcancausepolymerization/Received date:2021-08-30;Revised date:2021-11-04Corresponding author:ZH

13、ANLiang,Professor.E-mail:Author introduction:GUOTian-rui.E-mail:guo_Homepage:http:/ and emission of water2224.Nevertheless,themechanismoftheairoxidationreactionseemstoberelated to the experimental conditions25 and thechemicalpropertiesoftherawmaterials11,13.Mostofthecurrentstudiesfocusontheoxida-tio

14、nmechanismandkineticsofstandardmixtures2628.Yamaguchietal.28reportedthattheal-kyl-andbridgedalkyl-aromaticswerethemostreact-iveforlightaromatichydrocarbonspolymerizedwithairat330C,2.1MPa.Meanwhile,basedonfurtheranalysisoftheresultsandproducts,aseriesofoxida-tionmechanismsrelatedtothegrowthofmolecula

15、rmass were suggested.In addition,the interactionbetween hydrocarbons was observed while standardcompoundswereoxidizedbyair27.Theoxidationre-actionmechanismandkineticsofindustrialmixturescomposedofaromatichydrocarbons,suchasethylenetar(ET),havebeenlessinvestigateddespitetheeco-nomyandsimplicityofthep

16、rocessandthelowcostoftherawmaterials.Toacquireanexcellentcarbonaceousprecursor,wetriedtorevealtheoxidationprocessofethylenetar.Thereactionextentofethylenetarwasanalyzedbytheweightoftheresidues,whilethereactionpro-cess of ethylene tar was monitored by a combinedTG-MS-FTIRtechnique.BasedontheCoats-Red

17、fernmethod,thebasicdynamicparameterswereattained,whichprovided technical guidance for the prepara-tionofcarbonaceousprecursor.Finally,weproduceda high-softening-point petroleum pitch to coat ongraphitetoimprovetheelectrochemicalpropertiesofanodeinlithium-ionbatteries.2Materialsandmethods 2.1 Raw mat

18、erial and pretreatmentTheoriginalethylenetarprovidedbyPetroChi-naJilin Petrochemical Company Co.,Ltd was pre-treatedbyatmosphericdistillationat230C.Afterre-movingthelightfractions,theheavyresidue(ET-HR)wasusedforsubsequentexperimentsandcharacteriz-ation.Naturalgraphite(NG)wassuppliedbyShang-haiShans

19、hanTechCo.,Ltd.2.2 Experimental proceduresAbout800gET-HRwasplacedina2Lstain-lesssteelreactorandheatedat2Cmin1to310C.Thetemperaturewasheldat310Cfor10h,whilethewholeprocesswasinairatmospherewithaflowrate of 2 Lmin1.The oxidized product cooled toroomtemperaturenaturallywaslabeledasETP.Tocoatgraphite,ET

20、Pwasdissolvedinthetet-rahydrofuran solution with NG.The mass ratio ofETPtographitewas1:10.Aftersufficientstirringfor24h,thesolutionwasevaporatedinathermostaticwaterbath.Theobtainedsolidwasthencarbonizedat1000Cfor2hinN2atmosphere.Finally,ETPNGwasacquired.Thehalf-cellwasassembledintheargon-filledglove

21、boxwiththeelectrolyteof1molL1LiPF6inethylene carbonate(EC)/diethyl carbonate(DMC)/ethylmethylcarbonate(EMC)(111byvolume).Poly(vinylidenefluoride)(PVDF)wasservedasthebinder,while super C was the conductive agent.ETPNG,binder,and conductive agent were dis-persed in N-methyl-2-pyrrolidone(NMP)at a mass

22、ratioof9253,whichwasthencoatedoncopperfoilanddriedtoserveasanode.CR2016wasusedinthe electrochemical tests with the counter electrode(lithiumfoil)andtheporousseparator(Celgard2500).2.3 CharacterizationTheoxidationprocessofET-HRwasevaluatedby a synchronous thermal analyzer(STA-8000,PerkinElmer,America

23、).Thesampleweightof15mg,aheatingrateof5Kmin1from300to900K,andanairflowrateof20mLmin1werechosenastheex-perimentalconditions.Anelementalanalyzer(VARIOEL,Germany)wasusedtoanalyzetheelementalcompositionofET-HR.Thefourcompon-entsofpitchweremeasuredbythin-layerchromato-graphy(TLC)withflameionizationdetect

24、ion(FID),whichenhanced our understanding of the composi-第2期GUOTian-ruietal:Theoxidationreactionmechanismanditskineticsforacarbonaceous355tionanddistributionofethylenetar.Agaschromato-graphy-massspectrometry(GCMS-QP2010Plus,Shi-madzu,Japan)wasadoptedtoseparateandidentifythe chemical composition of ET

25、-HR.Based on theprobabilitymatching method(PBM)and the com-poundspectrumdataofNIST08andNIST08Slibrary,thestructureofthecomponentswasdeterminedac-cordingtotheconfidenceorsimilarity29.Themolecularmassdistributionwasanalyzedbyamatrix-assistedlaserdesorption/ionizationtime-of-flightmassspectrometryanaly

26、zer(4800PlusMALDITOF/TOF,AB SCIEX,America).A simultaneousthermalanalyzer(STA-8000,PerkinElmer,America)was used to obtain simultaneous weight signal andheatflowsignalatanairflowrateof20mLmin1andheatingrateof5Cmin1.TheTG-MS-FTIRinstru-mentincludesathermogravimetricanalyzer(SETSVSEvolution16/18,SETARAM

27、,France),amassspec-trumanalyzer(OMNIstar,Pfeiffer,Germany),andaFourier transform infrared spectrometer(Tensor27,Bruker,Germany)30.Thetestconditionsweresettothefollowing:thesampleweightof15mg,anairflowrateof20mLmin1,andaheatingrateof5Cmin1from300to900K.TheevolvedgasesofTGAweredetectedbythemassspectro

28、meterinaheliumatmo-sphereat280C.ThethermogravimetricanalysiswasconnectedwiththeFouriertransforminfraredspectro-meterthroughathermalinsulationpipe,andthetem-perature of the connecting pipe was maintained at280Ctopreventthecondensationoftheproducts.Theinfraredspectrumhadascanningrangeof4000600 cm1 and

29、 a resolution of 4 cm1.The scanningelectronmicroscope(SEM,JEOL-7100F,Japan)wasusedtoobservethemorphologyofthesamples.TheX-ray diffraction(XRD,Bruker D8 Advance,Germany)with Cu-Ka radiation(=0.15406 nm)wastodetectthecrystallinestructure.Thescatteringangles(2)werefrom10to80withascanrateof5min1.Thecycl

30、eperformanceofthehalf-cellwastestedon LAND CT2001A(China)by galvanostaticcharge/discharge.Thevoltagerangewas02V(vs.Li/Li+).Theratewas0.2Cforthefirst5cycles,afterwhichitkeptat0.5Cuntilthe300thcycle.2.4 Kinetics theoryThepyrolysisofthesolidcanbeexpressedasthefollowingreactionprocess31:A(solid)B(solid)

31、+C(gas)d/dtkf()Inthenon-isothermalexperimentsimulatedbyathermogravimetricanalyzer,theweightofthesamplewasmeasuredasafunctionoftemperature.Therateofconversion,isalinearfunctionofatemper-ature-independentrateconstant andatemperature-independentfunctionofconversion:d/dt=kf()(1)twhere istheconversiondeg

32、ree,and istime.isexpressedas:=mimtmim(2)mimtt mwhereistheinitialweightofthesample,istheweightofthesampleattime,isthefinalweightofthesampleinthereaction.kThereactionrateconstant,hasbeendescribedbytheArrheniusexpression:k=Aexp(EaRT)(3)AEaRTwhere isthepre-exponentialfactor,istheactiva-tionenergy,istheg

33、asconstant,and istheabso-lutetemperature.ThecombinationofEqs.(1)and(3)gives:d/dt=Aexp(EaRT)f()(4)=dT/dtIfthetemperatureofthesampleischangedbyacontrolledandconstantheatingrate,there-arrangementofEq.(4)gives:d/dT=Aexp(EaRT)f()(5)Theintegrated form of Eq.(5)is further ex-pressedas:G()=w0df()=AwTT0exp(E

34、aRT)dT(6)T0whereistheinitialtemperature.As one of the most popular iso-conversionalmethods,Coats-Redfernapproximationwasadopted,expressedas32:wexp(EaRT)dT=(RT2Ea)exp(EaRT)(7)BycombiningEq.(6)andEq.(7),thenewequa-356新型炭材料(中英文)第39卷tionwasexpressedas:ln(G()T2)=lnAREa(12RTEa)EaRT(8)2RT/EaBecause the exp

35、ression,is much lessthan1,Eq.(8)couldbesimplifiedas:ln(G()T2)=ln(AREa)EaRT(9)G()ln(G()/T2)1/TA series of reaction models defining aresummarizedinTable13334.Iftheoptimalreactionmodelisselected,thefunctionimageofwithrespecttoshouldbeastraightline.Throughtheslopeandintercept,theactivationenergyandpre-e

36、xponentialfactorcanbeobtained.3Resultsanddiscussion 3.1 Characterization of ET-HR3.1.1ThefundamentalpropertiesofET-HRAsshowninTable2,afteratmosphericdistilla-tionat230C,thesaturatedfractionofethylenetarwascompletelyremoved,andtheratioofcarbontohydrogenwas increased to 1.13.In addition,it re-mainedso

37、lubleintolueneevenwhenthecarbonyieldofET-HRreachedthevalueof14.1%.3.1.2GC-MSandLDITOF/MSofET-HRGC-MSwasadoptedtoseparateandidentifythechemical composition of ET-HR.The characteristicpeaks of various compounds were recorded inFig.1(a),andthepossiblesubstancescorrespondingtothesepeaksweresummarizedinT

38、able3.ThedatarevealsthatET-HRisanextremelycomplexmixturecomposedofaromatichydrocarbonswithvarioussidechains.The organic compounds with lower boilingpointscanbeseparatedandconfirmedwellbyGC-MS.Nevertheless,itisdifficulttodistinguishaccur-atelyforsomelargermolecules.Tosolvethisprob-lem,we tried to fur

39、ther analyze ET-HR by LDITOF/MS.TheresultshowninFig.1(b)suggeststhatalargenumberofwell-definedpeaksarenotdisplayedinGC-MS.Inaddition,thesepeaksarecontinuouslydistributedinthemolecularmassrangeof100800,indicatingthatET-HRcontainslotsofpolycyclicaro-matichydrocarbons.3.2 Oxidation mechanism of ET-HR3.

40、2.1DSC-TGAofET-HRAsshowninFig.2(b),DTGcurvereveals3sig-nificantmasslossstages,andthemasslossdataatdif-ferentstagesisshowninFig.2(a).Thefirststageoc-cursbetween300and520K,andthepeakappearsat399K.Thefirststage,showingmasslossof42.7%,iscausedbythevolatilizationoflightcomponents,to-gether with oxidation

41、 and polymerization/condensa-Table 1 A series of frequently-used mechanism models defining G()33-34MechanismsSymbolf()G()OrderofreactionFirstorderF11ln(1)SecondorderF2(1)2(1)11ThirdorderF3(1)3(1)21/2FourthorderF4(1)4(1)31/3DiffusionOne-waytransportD10.52Two-waytransportD2ln(1)1+(1)ln(1)Three-waytran

42、sportD31.5(1)2/31(1)1/311(1)1/32ContractinggeometryContractingcylinderR22(1)1/21(1)1/2ContractingsphereR33(1)2/31(1)1/3RandomnucleationandnucleigrowthAvrami-ErofeevA3/21.5(1)ln(1)1/3ln(1)3/2Avrami-ErofeevA22(1)ln(1)1/2ln(1)1/2Avrami-ErofeevA33(1)ln(1)2/3ln(1)1/3Avrami-ErofeevA44(1)ln(1)3/4ln(1)1/4Ex

43、ponentialnucleationPowerlawP3/22/31/22/3PowerlawP221/21/2PowerlawP332/31/3PowerlawP443/41/4第2期GUOTian-ruietal:Theoxidationreactionmechanismanditskineticsforacarbonaceous357tion of aromatic compounds.Volatilization of lightcomponentsisanendothermicprocess,whileoxida-tion and polymerization/condensati

44、on of aromaticcompoundsareexothermicprocesses.TheDSCcurveshowsthatthewholeprocessisendothermicfrom300to400K,indicatingthatthevolatilization of light components plays a dominantrole.After 400 K,the endothermic state graduallychangestoanexothermicstate,indicatingthatthevo-latilization of light compone

45、nts gradually decreasesandexothermicreactionssuchasoxidationandcon-densationpolymerizationofaromaticcompoundsaregraduallyenhanced.From520to719K,thepeakofthesecondstageappearsat619K.Inthisstage,theoxidationandpolymerization/condensationofaromat-iccompoundsplayanimportantrole,whichcausesamasslossof31.

46、3%.Inthethirdstage,between719and900K,thereisamasslossof26.1%.Thepeakofthethirdstageappearsat820K.TheDSCcurvesug-gests that there is a great exothermic peak at thisstage,indicatingthataviolentexothermicreactionoc-curs.Itisinferredthatthisprocessmaybeaviolentthermaloxidativedecompositionoffusedringaro

47、mat-iccompounds.3.2.2Evolvedgasesanalysisoftheoxidationpro-cessofET-HRBasedonGC-MS,somesubstancesthatmayap-pearintheevolvedgasescanbedetermined.Astherepresentative of oxidation products,mass units ofthese compounds are recorded in Table 4 and sub-sequentlyanalyzedbymassspectrometer.AsshowninFig.3(a)

48、,thepeakofthefirststageappearsat450K,whichisslightlyhigherthanthatoftheDTGcurve.Thethermogravimetryanalyzerandmassspectromet-erareconnectedbypipeline,whichcausesthedelay.Twoamuisallocatedtohydrogenasanimport-antfeatureofpolymerization/condensation.Withtheoccurrenceofpolymerization/condensation,thera

49、tioofcarbontohydrogenincreaseswhileHleavesintheform of hydrogen or other small molecules.In thecurve,thereare2peaksofpolymerization/condensa-tion,respectively appearing at 450 and 650 K.De-pendingonthesizeofthemolecule,thedifficultyofthereactionisdifferent.Thelargerthemoleculeis,the more difficult p

50、olymerization/condensation willbe.Taking 2,6-dimethylnaphthalene as an example,thepossiblereactionisshowninFig.4.16amumaybethepeakofmethane.BasedonGC-MS,weknowthatlotsofalkylsidechainsarepresentinET-HR,soitisverylikelytoproducegasesTable 2 The fundamental properties of ethylene tar and ET-HRElementa

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服