1、高等数学在实际生活中的应用在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将
2、这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以
3、及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相
4、应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。如果我们可以再多收集一些资料,具体了解到风沙强度与距离远近的关系
5、,我们可以进行修改,重新对上述方程式进行修改、完善。同时,在上述的方程式中,我们并没有考虑到不同树木类型,梭梭树、沙柳、樟子松以及胡杨树等树种的价格问题,如果需要更深一步的研究,我们可以将不同树木类型,梭梭树、沙柳、樟子松以及胡杨树等树种的价格进行了解,并且再次完善上述所建模型,在距离风沙源地同样的远近程度时,不同的树木类型,梭梭树、沙柳、樟子松以及胡杨树等树种的防护林各自所需要种植的面积,这样就可以分析不同的树木类型,分别梭梭树、沙柳、樟子松以及胡杨树等树种所种植的防护林所需要的费用,从而在经济层面上对不同的树木类型,梭梭树、沙柳、樟子松以及胡杨树等树种进行分析,找出最为经济划算的树木类型,
6、是梭梭树,还是沙柳,亦或是樟子松,还是胡杨树最为符合当地种植防护林的经济预算,从而帮助当地政府完成对防护林树木类型的选择。当然了,除了梭梭树、沙柳、樟子松以及胡杨树这四种文中提到的树木类型,其余的树木也可以套入到上述所建的模型之中,可以看到,高等数学的应用极为广泛。经过上述的一番分析,我们可以从中看到,只要用心思考,用心发现,高等数学在我们的日常生活中的身影是极为常见的。数学来源于生活,高等数学同样是来源于生活的,只有我们人真的学习数学,热爱数学,才会发现数学的美,数学的趣味性所在,才能让自己的学习乐在其中,更好的理解生活,热爱生活。在此,我要特别我的高数老师,是他把高等数学这门在其他人眼里看起来极为枯燥、高深的,看起来并没有什么应用性的一门学科,用他丰富的知识将这门学科融会贯通,让这门高等数学学科不再枯燥乏味,而是与实际生活结合了起来,是我们的高数课堂充满了趣味性,让我们的学习在实际生活中得到了应用,他教会我们的不仅是高等数学课本上那些知识点,不仅是考试时做题的方法、技巧,他教会我们的更是一种数学思想,数学思维,以及我们自主思考,自主探究学习的能力,通过老师带领我们对高等数学的学习,我对高等数学这一学科的学习充满了信心。