收藏 分销(赏)

液压防溢板的设计.doc

上传人:胜**** 文档编号:3033183 上传时间:2024-06-13 格式:DOC 页数:16 大小:510KB
下载 相关 举报
液压防溢板的设计.doc_第1页
第1页 / 共16页
液压防溢板的设计.doc_第2页
第2页 / 共16页
液压防溢板的设计.doc_第3页
第3页 / 共16页
液压防溢板的设计.doc_第4页
第4页 / 共16页
液压防溢板的设计.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、液压防溢板的设计 目录 前言21 题目拟定31.1工况参数 3 1.2设计要求32 明确系统设计要求 33 设计要求及工况分析 3 3.1分析系统工况3 3.2负载与运动分析5 3.3确定液压缸主要参数,编制工况图7 3.4液压泵的选择7 3.5电动机的选择 8 3.6确定油管8 3.7确定油箱94 确定系统原理图115 验算液压系统性能11 5.1验算系统压力损失12 5.2验算系统发热与温升146 参考文献15 致谢15!所有下载了本文的注意:本论文附有1张原理图、1张负载图共2张CAD图纸,凡下载了本文的读者请留下你的联系方式(邮箱),我把图纸发给他,纯免费的。最后,希望此文能够帮到你!

2、前言 现代机械一般多是机械、电气、液压三者紧密联系,结合的一个综合体。液压传动与机械传动、电气传动并列为三大传统形式,液压传动系统的设计在现代机械的设计工作中占有重要的地位。因此,液压传动课程是工科机械类各专业都开设的一门重要课程。它既是一门理论课,也与生产实际有着密切的联系。为了学好这样一门重要课程,除了在教学中系统讲授以外,还应设置课程设计教学环节,使学生理论联系实际,掌握液压传动系统设计的技能和方法。液压传动课程设计的目的主要有以下几点: 1、综合运用液压传动课程及其他有关先修课程的理论知识和生产实际只是,进行液压传动设计实践,是理论知识和生产实践机密结合起来,从而使这些知识得到进一步的

3、巩固、加深提高和扩展。 2、在设计实践中学习和掌握通用液压元件,尤其是各类标准元件的选用原则和回路的组合方法,培养设计技能,提高学生分析和嫁接生产实际问题的能力,为今后的设计工作打下良好的基础。 3、通过设计,学生应在计算、绘图、运用和熟悉设计资料(包括设计手册、产品样本、标准和规范)以及进行估算方面得到实际训练。!所有下载了本文的注意:本论文附有1张原理图、1张负载图共2张CAD图纸,凡下载了本文的读者请留下你的联系方式(邮箱),我把图纸发给他,纯免费的。最后,希望此文能够帮到你!防溢板液压系统的设计一、题目的拟定防溢板的的作用是保护中间罐车在行走过程中以免钢水的溢出,在中间罐车到达终点时,

4、又要将防溢板提起,以便将钢水倒出。该系统通常采用双油缸工作,工况如下:防溢板下降盖紧中间罐车保压防溢板升起工况参数:防溢板下降速度:V=60,防溢板的自重:G=14T,防溢板升降行程:H=740mm,最大压紧力:F=130KN。快降行程 L1=500MM 慢降行程 L2=240MM L3=740 启动制动时间 T=0.2S要求:1、升降速度可调,保压过程中油泵卸荷。2、设计计算液压系统。3、画出原理图;选择液压元件。4、画出集成块图。二、明确系统设计要求1、主机的用途、主要结构、总体布局;主机对液压系统执行元件在位置布置和空间尺寸以及质量上的限制。2、主机的工艺流程或工作循环;液压执行元件的运

5、动方式(移动、转动或摆动)及其工作范围。3、主机各液压执行元件的动作顺序或互锁要求,各动作的同步要求及同步精度。4、液压吃性元件的负载和运动速度的大小及其变化范围。5、对液压系统工作性能(如工作平稳性、转换精度等)、工作效率、自动化程度等方面的要求。6、液压系统的工作环境和工作条件,如周围介质、环境温度、湿度、尘埃情况、外界冲击振动等。7、其他方面要求,如液压装置在外观、色彩、经济性等方面的规定或限制。三、设计要求及工况分析1、 分析系统工况对液压系统进行工况分析,就是要查明它的每个执行元件在各自工作过程中的运动速度和负载的变化规律,这是满足主机规定的动作要求和承载能力所必须具备的。液压系统承

6、受的负载可由主机的规格规定,可由样机通过实验测定,也可以由理论分析确定。当用理论分析确定系统的实际负载时,必须仔细考虑它所有的组成项目,例如:工作负载(切削力、挤压力、弹性塑性变形抗力、重力等)、惯性负载和阻力负载(摩擦力、背压力)等,并把他们绘制成图。2、负载与运动分析要求设计的防溢板实现的工作循环是:快进工进快退停止。主要性能参数与性能要求如下:最大压紧力F=130KN;防溢板的自重G=14T;下降速度,工进速度,快退速度,防溢板快降行程,防溢板慢降形成,防溢板上升行程:H=740mm;启动制动时间,液压系统执行元件选为液压缸。由于两个液压缸在各个时刻所受负载相同,所以只要分析其中一个即可

7、.单缸所受负载的变化可分为以下几个阶段:(1)在下降刚开始启动时,液压缸要受到防溢板惯性力的作用,此力为(2)当下降达到恒速状态时,防溢板完全靠自重下降,此时液压缸所受负载为0。(3)在慢降阶段,因为油液压力逐渐升高,约达到最大压紧力的左右,故 时 =3250N(4)在保压阶段,因为系统要求最大压紧力为130KN,所以每个液压缸所受负载为65KN.(5)在上升的启动阶段,液压缸除了受到防溢板自身的重力外,同样要受到惯性力的作用,此时惯性力为 (6)匀速上升阶段, (7)在上升的制动阶段,同样要考虑惯性力的作用,此时 ,推出(1)根据技术要求和已知参数对液压缸各工况外负载进行计算,结果如下:工况

8、计算公式外负载(N)快降启动加速2100N快降匀速0慢降(工进)3250N保压65000N快速回退启动71050快速回退匀速70000N快速回退制动68950 负载情况和工况表(2)根据已知参数,各工况持续时间近似计算结果如下:工况 计算式 时间/S快降 500/60 8.33()慢降 240/25 9.6()上升 740/30 25()(3)由以上数据,并在负载和速度过渡段作粗略的线性处理后,可得到负载循环图和速度循环图:负载循环图和速度循环图3、确定液压缸主要参数,编制工况图根据液压传动系统及设计可选液压缸的设计压力,将液压缸的无杆腔作为主工作腔,考虑到缸下行时,滑块自重蚕蛹液压方式平衡,

9、则可计算出液压缸无杆腔的有效面积,取液压缸的机械效率cm=0.9。液压缸内径:按GB/T2348-1993,取标准值D=80mm。又由,可推出D=d,则d=50mm,即为标准值。由此计算两腔面积: 因此,液压缸在各阶段的压力和流量计算如下:工作阶段计算式负载F/N工作腔压力P/输入流量L/min快降启动210076202911.023快降匀速00慢降325011793304.593保压6500023.590上升启动7105015.713MPa11.023匀速上升7000015.481Mpa制动6895015.249Mpa液压缸各阶段的压力和流量(图)循环中各阶段的功率计算如下:快速下行阶段:匀

10、速下行阶段:慢降阶段:保压阶段:上升启动阶段:匀速上升阶段:制动阶段:4、液压泵的选择 由液压缸的工况图,可以得出液压缸的最高工作压力在保压时出现,考虑泵至缸的进油路压力损失,估取为,则最高工作压力实际为。液压泵的最大供油量按液压缸的最大输入流量(11.023)进行估算,取泄漏系数,则单缸的流量为根据以上计算结果查阅手册或产品样本,选用规格相近的,选取CBT-E314型齿轮泵,其额定压力16,最高压力20,排量16,额定转速900。最高转速2000。 5、电动机的选择由以上第四点计算结果所选泵的参数情况,及系统各个阶段功率计算的结果可知,系统的最大功率出现在防溢板上升阶段,此时液压泵的最大理论

11、功率为:,由表5-13取泵的总效率为,则液压泵的实际功率即所需电机功率为,查表5-14选择驱动液压泵的电动机类型为,其额定功率为,转速为,额定转矩为。按所选电动机转速和液压泵的排量,取液压泵的容积效率,则液压泵的最大理论流量为:,故大于计算所需流量,满足使用要求。6、确定油管各元件间连接管道的规格按元件接口处尺寸决定,液压缸进、出油管则按输入、排出的最大流量计算。由于液压泵具体选定之后液压缸在各个阶段的进、出油量已与原定数值不同,所以要重新计算如下表所示。表中数值说明,液压缸快进、快退速度与设计要求相近。这表明所选液压泵的型号、规格是适宜的。流量、速度快进工进快退输入流量/L4.593排出流量

12、/L运动速度/m根据上表中数值,当油液在压力管中流速取时,按课本中式(7-9)算得与液压缸无杆腔和有杆腔相连的油管内径分别为:这两根油管都按GB/T2351-2005选用外径内径的无缝钢管。 7、确定油箱油箱的容量按式估算,其中为经验系数,低压系统,=24;中压系统,=57;高压系统=612。现取=6,得按JB/T 7983-1999规定,取标准值V=160L。四、确定系统原理图 系统设计要求:1、升降速度可调,保压过程中油泵卸荷。2、设计计算液压系统。3、任意位置可停。4、要求两缸同步,但精度要求不高。根据系统设计要求,再结合速度循环图和负载循环图,首先选择调速回路。由于工况要求为:防溢板下

13、降盖紧中间罐车保压防溢板升起,由于当防溢板快速下降即将盖紧中间罐车的时候要求速度有所减小,即实现一次工进,所以应该设置快速和慢速换接回路,此回路受压力继电器的控制。快速和慢速换接回路如下所示:快速回路和换向回路的选择,系统中采用快、慢速换接回路后,不管采用什么油源形式都必须有单独的油路直接通向液压缸,以实现快速运动。当防溢板由保呀转为快退时,回路中通过的流量很大,为了保证换向平稳期间,可采用电液换向阀式换接回路。换向回路和快速回路如下:再由于系统保压过程中要求油泵卸荷,故设置卸荷回路如下:同时在保压过程中,通过设置在进油路上的液控单向阀和电接点压力表当换向回路中的换向阀位于中位时,液控单向阀对

14、系统实行保压,从而达到系统设计要求。保压回路如下:把上面选出的各种回路组合画在一起,就可以得到如下图所示的防溢板液压系统原理图: 系统原理图系统动作循环表表5.1系统动作循环动作名称信号来源电磁铁工作状态液压元件工作状态1YA2YA3YA4YA换向阀7换向阀5换向阀10快进启动按钮+-+-左位左位右位工进压力继电器发出信号+-右位保压电接点压力表发出信号,液控单向阀保压-+中位右位左位快退停止按钮-+-右位左位右位根据所选择的液压泵规格及系统工作情况、系统原理图、系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件、辅件元件以及其他液压元件,由于两条支路上的液压元件

15、完全相同,所以现只选一条支路即可,一并列入下表中:序号元件名称型号规格额定压力额定流量说明1电接点压力表KF3-E1B16-可测压力点数:12压力继电器42050公称通径6mm,灵敏度1.5Mpa。3溢流阀YF-L10H40调压范围3.514Mpa,公称通径10mm4液控单向阀2025公称通径10mm5二位二通换向阀22DF3-E5B1625公称通径6mm6调速阀1625公称通径8mm。公称流量25L/min7三位四通换向阀34DY-B10H-T2130滑阀机能Y,ABO连通,双电磁铁8单向阀2125公称通径10mm9溢流阀YF3-E10L63调压范围0.516,卸荷压力0.4510换向阀22

16、DF3-E5B1625公称通径6mm11型齿轮泵CBT-E314201612电动机额定功率为4kw,转速为960r/min五、验算液压系统性能1验算系统压力损失由于系统管路布置尚未确定,整个系统的压力损失无法全面估算,估算阀类元件的压力损失、待设计好管路布局后,加上管路的沿程损失和局部损失即可。但对于中小型液压系统,管路的压力损失甚微,可以不予考虑。压力损失的验算应按一个工作循环中不同阶段分别进行。(1) 快进时在防溢板快进时,进油路上油液通过换向阀7的流量是11L/min,换向阀5的流量是25L/min,通过液控单向阀4的流量是25L/min,并进入无杆腔。因此进油路上的总压降为 此值不大,

17、不会使安全阀开启,故能保证泵的流量全部进入液压缸。 回油路上液压缸双缸有杆腔中的油液通过电磁换向阀7的流量都是29.85L/min,经过换向阀7直接回油箱此时有杆腔和无杆腔的压力差为: ,因为是1条 路的压力差,所以需要乘以2,则此值小于估计值,所以是安全的。(2) 工进时工进时,油液在进油路上通过调速阀6的流量是2.81L/min,其压力损失为0.6L/min,通过液控单向阀的流量是4.593L/min,因此在液压缸回油腔的压力为:考虑到压力继电器动作需要压差,故实际回油腔压力为:,同样的两条支路总共的回油腔压力为1.07此值小于原估计值,所以是安全的。(3)快退时快退时在进油路上,电磁换向

18、阀7进无杆腔。在回油路上,油液通过液控单向阀、电磁换向阀5、电磁换向阀7返回油箱。1).在进油路上总的压力损失为:此值较小,所以所以液压泵驱动电动机的功率是足够的。2).在回油路上总的压力损失为:所以,快退时液压泵的最大工作压力应为:由此可得所选液压泵的额定工作压力满足最大工作压力,即安全。2、验算系统发热与温升(1)根据各工况持续时间近似计算结果表:工况 计算式 时间/S快降 500/60 8.33()慢降 240/25 9.6()上升 740/30 25()由上述工况时间表可知,本液压系统在整个工作循环持续时间中,快速回退(即:上升)动作所占时间最多,所以系统效率、发热和温升可用快速回退时

19、的数值来粗略计算。(2)快速回退阶段的回路效率为:泵卸荷时通过溢流阀所产生的压力损失为,因此它的数值为:取泵的总效率,现取液压缸的总效率为,杂可计算本液压系统的效率为:可见快速回退时液压系统的效率比较低,这主要是由于溢流损失造成的。快速回退工况液压泵的输入功率为: 由系统的发热量计算式:,可得快速退回阶段的发热功率: 取散热系数,算得系统温升为:设防溢板的工作温度为,加上此温升后有,对照液压传动系统及设计表5-53所示,仍在正常工作范围内,即满足 设计要求。油温在允许范围内,油箱散热面积符合要求,不必设置冷却器。六、参考文献1、液压传动教材 机械工业出版社2、新编液压件使用与维修技术大全 中国

20、建材工业出版社3、机械零件设计手册(液压与气动部分) 冶金出版社4、液压传动系统及设计 化学工业出版社5、液压工程手册 机械工业出版社致 谢感谢陈老师,谭老师,龚老师在本次课程设计期间给予我的帮助和指导。本次课程设计提高了我对本专业知识的全面认识,由于时间和水平有限,本设计难免存在缺点和错误,望指导老师批评指正。1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MC

21、S-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器7. 单片机控制的二级倒立摆系统的研究8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊

22、Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO,2激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基

23、于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42

24、. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源

25、的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计

26、 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究79. 基于单片机的模糊控制器在工业电阻

27、炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的C/OS-的研究82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机

28、的嵌入式系统中TCP/IP协议栈的实现与应用92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机

29、的温度测控系统在温室大棚中的设计与实现103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADC841单片机的防爆软起动综合控制器的研究105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. PIC单片机在空调中的应用 113. 单片机控制力矩加载控制系统

30、的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功!15

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服