1、Cite this:NewCarbonMaterials,2024,39(2):173-200DOI:10.1016/S1872-5805(24)60830-9A review of graphdiyne:A new material for synthesizing effectiveadsorbents for aqueous contaminantsGauravSharma1,2,*,YakshaVerma2,AmitKumar1,2,PoojaDhiman2,WANGTong-tong3,FlorianJ.Stadler1(1.College of Materials Science
2、and Engineering,Shenzhen Key Laboratory of Polymer Science and Technology,Guangdong Research Center for Interfa-cial Engineering of Functional Materials,Nanshan District Key Lab for Biopolymers and Safety Evaluation,Shenzhen University,Shenzhen 518055,China;2.International Research Centre of Nanotec
3、hnology for Himalayan Sustainability(IRCNHS),Shoolini University,Himachal Pradesh 173229,India;3.Institute for Interdiscplinary and Innovate Research,Xian University of Architecture and Technology,xian 710055,China)Abstract:Graphdiyne(GDY),anewtwo-dimensional(2D)carbonmolecule,isexpectedtohaveapplic
4、ationsintheremovalofcontaminantsfromaqueousmedia.Ithassuperiorconjugation,unusualandvariedelectronicproperties,andexceptionalchemicalandthermalstabilitybecauseofitsframeworkofspandsp2hybridizedcarbonbondsthatarecombinedtoproducebenzeneringsanddiacetylenicbondsinatwo-dimensionalsymmetricalnetwork.Its
5、molecularchemistryistheresultofithavingcarbon-carbontriplebonds,witharegulardistributionoftriangularporesinitsstructure,whichprovidereactionsitesandvariousreactionpathways.GDYisanadsorbentwithanexcellentefficiencyfortheremovalofoil,organicpollutants,dyes,andmetalsfromcontaminatedwa-ter,butthereislim
6、itedevidenceofitbeingusedasanadsorbentintheliterature.Thisreviewdiscussesitssynthesisanditsuseasanadsorbenttogetherwithitsprospectsforpollutantremoval.Key words:Graphdiyne;Synthesis;Adsorption;Contaminants;Plausiblemechanism1IntroductionRapid urbanization1 and industrialization2 aregoingon,whileglob
7、alenergydemandisincreasing,whichseverely contaminating water.The environ-ment and human life are seriously impacted by theheavy metals3,organics4,toxic dyes5,and otherpollutantsthatwerereleasedintowaterbyindustrialandhouseholdprocesses.Themanagementandelim-inationofenvironmentalpollutionhavebecomeon
8、eof the most important concerns that have to betackled.Inordertodealwiththeexpandingissueofaqueouspollutants,numerous cutting-edge tech-niques,including physical,chemical,and biologicalapproaches,havebeencreatedrecently.Thesemeth-odsrelyoncertainsubstanceswithdistinctcapabilit-iestocontrolandremovet
9、hepollution.Aqueouscontaminantscancurrentlyberemovedusingavarietyofmethods,includingchemicalprecip-itation,ion exchange,membrane filtering6,electro-chemical oxidation7,photocatalytic degradation89,andadsorption10.Chemicalprecipitationisinexpens-ive,butitstruggleswithremovaloflowheavymetalionconcentr
10、ationsandproducesalotofsludge.Whileonexchangetechniquedoesnotincludesludgepro-duction,butismoreexpensive.Electrochemicaltech-nologiesaremoreefficientandproducelesssludge,buttheyrequiresignificantupfrontinvestmentsandalso expensive power supply.Membrane filtrationprovidesgreatselectivityandefficiency
11、butincursin-creased operational costs due to membrane foulinganddecreasedpermeateflux11.Becauseofitspoten-tialtoharnessinfinitesolarenergyandlackofsec-ondary harmful byproducts,semiconductor-basedphotocatalysisisgainingpopularityinadvancedoxid-ationprocesses.However,someseriousdrawbacksofphotocataly
12、sts like limited solar activity and rapidelectron-holepairrecombinationrestricttherangeoftheirapplications1112.Adsorptionisoneofthemostcompetitive and widely utilized treatments amongthemduetoitslowcost,easeofuse,broadapplicabil-ity,simplicity of recovery,and lack of by-productReceived date:2023-08-
13、03;Revised date:2023-11-25Corresponding author:GauravSharma.E-mail:Homepage:http:/ throughout the treatment process.Due totheirremarkableadvantagesintermsofchemicalandphysicalproperties,metal-freecatalysis,andenviron-mentalfriendliness,carbonmaterials,particularly2Dmaterials,havegarneredincreasingin
14、terest1318.Itiswellknownthatcarbonmaterialscanhybridizein3ways:sp,sp2orsp3.Dependingonthenumeroushy-bridformsandrichperiodicproperties,variouscar-bonallotropescanbeproduced,suchasdiamond(sp),graphene(sp2),fullerenes(sp2),carbon nanotubes(sp2),graphite(sp3)and others19.These carbon-en-riched2Dmateria
15、lshaveadiversesetofelectrical,mechanical,andelectrochemicalproperties,resultinginavarietyofincreasedcapabilities.Forexample,be-causeoftheirhighsurfaceareaandoutstandingelec-tricalconductivity,2Dmaterials,particularlythoseinthegraphenefamily,aregarneringinterestinthecre-ationofimprovedcatalysts.Their
16、ultrathinnano-sheetshapehelpstopreventnanoparticleagglomerationandimproves electron transport2022.These substancescanbeemployedinvariouswaysasadsorbentstofil-teroutimpuritiesfromaqueoussolutions.Materialsbasedoncarbonaremostcommoninadsorbents.Wefocusonthenovellow-dimensionalcarbonmaterialGraphdiyne(
17、GDY)(Fig.1)whichbelongstothegraphynefamilyandhastheabilitytoexhibitad-sorptionphenomenatoserveasanadsorbentforthepurificationofaqueouscontamination.Atwo-dimen-sional(2D),syntheticcarbonallotropecalledgraph-diyneexhibitsthepropertiesofbothspandsp2hy-bridized carbon atoms.The sp-hybridized carbonatoms
18、ingraphynes,asopposedtoothercarbonallo-tropes,whichonlyhavesp2atoms,givethemradic-ally distinct structural traits and characteristics.Baughmanetal.originallypresentedastructuralmod-eloftheGDYin1887.Anovelallotropefollowingfullerene,GDY,wasinitiallydescribedbyHaleyin199723.Itwassuccessfullycreatedfor
19、thefirsttimein2010,utilizingacrosscouplingprocesswithcop-per24.The inclusion of sp-sp2 hybridized carbonatomsinGDY,asopposedtoothercarbonallotropeslikecarbonnanotubesandgraphene,makesitcom-pletelydistinctfromthoseothermaterials,whichonlyincludesp2hybridizedcarbonatoms.GDYnetworksarecomposedofinterli
20、nkedC6hexagonslinkedbyacetylenelinksandhaveaspecificatomicconfigura-tion and electrical organization.This results in aplanarcarbonframeworkwithanextensiveconjuga-tionsystem,auniformdistributionofpores,andfinelyregulated electrical characteristics.In comparison tographene,these distinct properties ma
21、y provide en-hanced or tunable reactivity and flexibility2021,25.GDYpossessesseveralintriguingcharacteristics,in-cludingawell-distributed3Dporestructure,asizableconjugatedsystem,adirectbandgapof0.46eV,ex-cellent carrier mobility at ambient temperature(105cm2V1s1)26,goodelectricalconductivity,andasiz
22、ablesurfacearea.Additionally,GYDexhibitsin-herentmagnetism27andisparamagneticinitsspin-half.Furthermore,by doping GDY with nitrogen(N)28,itsparamagneticpropertiescanbeimproved.TheseremarkablepropertiesmakeGDYsuitableforawiderange of applications across various fields in-cludinggasseparation2932,ener
23、gystorage32,catalys-is33,sensing34,biomedical devices35 electronicdevices16andenvironmentalremediation36.Theearliestknowngraphdiynesynthesisisbasedonhexaethynylbenzeneasapossibleprecursor37.InordertoevaluatewhetherbiggerGDYfragmentsandFig.1Structureofgraphdiynewithtriangularvoid174新型炭材料(中英文)第39卷two-
24、dimensionalgraphdiynecanbesynthesizedeas-ily,the researchers have explored the pathways forsynthesis of small-molecule diyenes which is alsoknownasgraphdiynesubstructures.GDYissynthes-izedusingacombinationofchemicalprocessesinor-ganicsolvents,notablyCu-mediatedacetyleniccoup-lingreactions.Thesereact
25、ionsincludeGlasercoup-ling,Glaser-Haycoupling,Eglintoncoupling,andal-kynylsilanecoupling,withtheirpreciseselectionim-pactingGDYsshape38.Therehavealreadybeenalotoftheoreticalinvestigationsonone-dimensionalal-kyne-relatedmolecularwires,likegraphenenano-rib-bons.Byalteringthedimensionality,itispossible
26、todrasticallychange the characteristics of the graph-diynestructure,andtheadditionofacetylenicbondimpactsitsmechanicalproperty39.Theinvestigationofthesynthesispathwaysofgraphdiynesegmentsandnano-ribbonsandstudiesoftheirproperties,willbehelpfulinfiguringouthowtheirstructureandpeculi-archaracteristics
27、relatetooneanother40.Usingoxid-ativePd/CuorCu-catalyzed41orSonogashiracross-couplingproceduresandcoupling-oxidativeacetylen-ic42 reactions,modern fabrication methods for al-kyne chemistry have been devised.Graphdiynes(Fig.1)can be produced using a unique techniquecalledon-surfacechemistry.Variousmet
28、hodsofGDYsynthesisincludetheexplosionmethod,thevapor/li-quid/solid(VLS)method,interface-assistedsynthesis,Cu-surface-mediatedsynthesis,themicro-mechanicalexfoliationmethod,etc.Thesynthesisofthisground-breaking 2D carbon material was made possible bytheexplorationofafewkeycomponentsrequiredfortheprod
29、uctionofhighlyorderedgraphdiyne.GYDisconsideredoneofthesolutionsforwaterpurificationthat can be used as an adsorbent due to its porousnature,diacetylenic linkage,anionic nature,hydro-phobicity,largeconjugatedsystem,presenceofatri-angular void(Fig.1),ability to interact with metalionsandotherpollutan
30、tsinwater.ThereareveryfewexamplesofGDYasanad-sorbentinreportedliterature,whichwillbediscussedhere,showingthepotentialofGYDasaremarkableadsorbent material.The reviews that have alreadybeen published have primarily concentrated on thefabrication methods and characterization techniquesofGDYanditsdistin
31、ctivefeaturesintherealmsofmaterial and energy4345.However,there are lessknowndiscussionpapersonthetopicofthepurifica-tion of aqueous contaminants.The supplication ofGDYasanadsorbentinthefieldofwastewaterpuri-ficationishighlightedinthispaper,withspecialatten-tionpaidtothepeculiarityofthestructure.Thi
32、sart-icleprovidesanoverviewofthesynthesis,character-ization,adsorption kinetics,and isotherms and alsohighlights the mechanism of adsorption of GDY-basedmaterialsasadsorbents,withaparticularem-phasisontheirapplicationinwaterremediation.Fi-nally,weintendtonotonlysummarizetheexpandingbody of GDY resea
33、rch studies but also present ourviewpointonthepotentialapplicationsofGDYasafunctionalmaterialfortheremovalofaqueouscon-taminants,as well as highlight the major problemscurrentlyfacingthispromisingfieldanditsfuturepro-spects.2GraphdiynesynthesismethodGDY exhibits excellent chemical and physicalcharac
34、teristics and is a very interesting,stable,andfamousmaterial among carbon allotropes.Fabrica-tion of GYD using de-hydrobenzoannulene,thesimplestunitofgraphdiyne,dehydro-benzo18an-nulene,and its derivatives received a significantamountofattention.Throughtheuseofcyclooligo-merization,the smallest stab
35、le do-deca-dehydro-tri-benzo 18 annulene was first produced in the late1950s37.Through low-to medium-yield 1,2-die-thynylbenzene cyclization,Cu was used to producethedesiredmacrocyclic.Bycontrollingthereactionconditions,amixtureoftetramers,dimersandtrimersina predictable ratio could almost always be
36、 pro-duced.Various attempts have been made to fabricateGDY involving dry4648 and wet chemistry24,49(Fig.2).Couplingreactionsaretherootsforsynthes-izingGDYandmostlyinvolvecopper-mediatedpro-第2期GauravSharmaetal:Areviewofgraphdiyne:Anewmaterialforsynthesizingeffective175cesses.Haleyin2008providedstrate
37、giesforfabrica-tion and configurations of non-natural allotropes ofcarbonandalsopresentedtheoptoelectronicproper-ties of GDY37.Hexa-ethynyl benzene(HEB)andcross-couplingprocedureswereusedtosuccessfullysynthesizeGDYonCusurfacesin201024.Follow-ingthefirstexperimentalGDYsynthesis,mucheffortwasmadetopro
38、duceGDYwithaspecificmorpho-logy under multiple reaction application conditions.This was accomplished by utilizing the cross-coup-lingchemicalapproachofdesignlinkinginanorgan-icsolvent.2.1 Coupling reactionsCoupling reactions(involving carbon-carbonbondformation)50arethefundamentalreactionsforthesynt
39、hesisofGDYinvolvingreactionsbetweentheterminalalkynesubstrateandthemetalsubstrateorotherterminalalkynessubstratefortheformationof1,3diynes51.Metalincouplingreactionseitheractsasasubstrateorasacatalystinthereactionmedium.Coupling reactions are further described as homo-couplingandcross-couplingreacti
40、on.Crosscoupling(Reaction1)involvesreactionsbetweendifferentsub-strates,whereashomocoupling(Reactions2,3and4)involves reactions between the similar substrates.Here we will discuss those coupling reactions thathavebeenusedforthefabricationofGYDformation,suchasGlasercoupling52,Eglinton-Glasercoupling5
41、3,Glaser-Haycoupling54,andcouplingre-actions involving alkylsilane55(Reaction 5).Thesereactions have been used as frameworks/models forthefabricationsofGDYanditsvariousderivatives.GDY-basednano-wires56,foams57,filters58(adsorb-ent material),nanotube arrays59,Nano walls60 etc.aresynthesizedbytheserea
42、ctionsinvolvingdryandwetchemistrytechniques.H+H3CXBase,solventMetal(Pd,Ni),Cu(1)saltCH3Reaction1:Basiccross-couplingreactionTheGlaserreactionisanoxidative-homo-coup-lingreactionthatresultsinthesynthesisof1,3-diynesfromterminalalkynes.ItistheveryfirstapproachforthesynthesisofGDY.Glaserdemonstratedthe
43、acet-yleniccouplingreactioncatalyzedbycopper(l)saltbetweentwo phenyl acetylene substrates in an al-kalinesolvent.Theclassicalhomo-couplingreactioniscatalyzedbycoppersaltinthepresenceofanoxid-antandabase.Althoughcoppercomplexesweretra-ditionally used as catalysts for this process,recentbreakthroughsu
44、singnovelligandsandadditivesandtheadditionofsilver,cobalt,andpalladiumcatalystshaveconsiderablyenhanceditsefficiency54.RCH2CuClNH4OH,EtOH2RCu2O2NH4OH,EtOHRCCCCRReaction2:Glaserhomo-couplingreactionSchmidt et al.61 emphasizes the importance ofcopper(Cu)as a catalyst in the production of 1,3-diynes.Co
45、pper is important because it promotesmechanochemicalGlasercoupling,whichisacriticalstepinGDYsynthesis.Whilethestudyinvestigatesthe impact of several catalysts,Cu emerges as themost effective,resulting in higher yields in a veryshortperiod,especiallywhenexposedtoair.CH2Ball millingCuI(5 mol%)Zirconia
46、 base30 Hz,10 minReaction3:Glasercouplingreactionusingcopperasacatalystwithnoby-productsThestatisticssupportCussuperiorityoverothermetals such as palladium,ruthenium,and iron,andSynthesismethod ofgraphydineDrychemistryWetchemistry1.On surface synthesis1.Direct growth on coppersubstrate2.Interface as
47、sisted3.Solution phase van derWalls epitaxy2.Top down methodFig.2Synthesismethodsofgraphdiyneinvolvingdryandwetchemistryapproaches176新型炭材料(中英文)第39卷thispreferenceisattributabletoCuscapacitytoen-hancethedesiredcouplingreaction(Reaction3)whilePdcreateundesirablebyproducts(Reaction4).There-searchemphasi
48、zes the significance of Cu in produ-cingthedesired1,3-diynesfeatures,emphasizingitsindispensablefunctioninGDYsynthesis.Intheeglinton-glasercouplingreaction,terminalalkynes are homo-coupled while a stoichiometricquantityofcupricsaltinpyridineispresent(Reaction5).TheGlaser/Haycouplingprocessisthefurth
49、ermodificationoftheGlasercoupling,modifiedbyHay,in which N,N,N,N-Tetra methylene diamine(TMEDA)isusedascatalyst(inthepresenceofO2)assolubilizingligandforCu(1)halides.Therearenu-meroussolvents in which the copper-TMEDA tan-dem is soluble,giving the Hay coupling reactiongreaterversatility(Reaction6).R
50、CHCu(AcO)2PyridineRCCCCRReaction5:Eglinton-GlasercouplingreactionRCHCuCl/TMEDAO2 SolventRCCCCRReaction6:Glaser-HaycouplingreactionAnother coupling reaction involves acetyleniccouplingusingalkynyl-silane(Hiyamacoupling)me-diatedbycopper(1)salt.Themonomerusedforthereactionisastableterminalalkynewithth