收藏 分销(赏)

步进电机控制系统的设计长春理工大学毕业论文.doc

上传人:可**** 文档编号:3010688 上传时间:2024-06-13 格式:DOC 页数:28 大小:456KB
下载 相关 举报
步进电机控制系统的设计长春理工大学毕业论文.doc_第1页
第1页 / 共28页
步进电机控制系统的设计长春理工大学毕业论文.doc_第2页
第2页 / 共28页
步进电机控制系统的设计长春理工大学毕业论文.doc_第3页
第3页 / 共28页
步进电机控制系统的设计长春理工大学毕业论文.doc_第4页
第4页 / 共28页
步进电机控制系统的设计长春理工大学毕业论文.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、长春理工大学成人教育学院毕业论文(设计)题 目:_步进电机控制系统的设计 成 绩:_学历层次:_ _专 业:电气工程及其自动年 级:_ _姓 名:_ _指导教师:_完成日期:_摘 要步进电机是一种纯粹的数字控制电机,是将电脉冲信号转变为角位移或线位移的开环控制元件。本文应用单片机AT89C51和脉冲分配器PMM8713,步进电机驱动器,光电隔离器4N25等,构建了步进电机控制器和驱动器为一体的步进电机控制系统。通过AT89C51和脉冲分配器PMM8713完成步进电机的各种运行控制方式,实现步进电机在3相6拍的工作方式下的正反转控制和加减速控制。并通过步进电机丝杠连动,带动XY工作台的直线运动,

2、实现从起点A点到预定点B点的位移控制。整个系统采用模块化设计,结构简单,可靠,通过人机交互换接口可实现各功能设置,操作简单,易于掌握。该系统可应用于步进电机在机电一体化控制等大多数场合。实践证明,基于单片机控制的步进电机比传统的步进控制器具有更好的性能,更加简单、方便、可靠。本设计的主要研究对象就是开环伺服系统中最常用的执行器件步进电机。关键词: 步进电机,单片机,正反转控制,加减速控制,工作台目 录1绪论11.1 步进电机及其发展21.2 步进电机国内外的研究与在我国的应用.21.3 本文设计内容.22 步进电机简介32.1 步进电机的概念32.2 步进电机的结构分类与工作原理32.2.1

3、步进电机的结构32.2.2 步进电机的工作原理32.2.3 步进电机的分类52.3 步进电机的特点52.4 步进电机的驱动62.5 步进电机的基本参数82.5.1 步进电机的静态指标术语82.5.2 步进电机动态指标及术语93 步进电机的单片机控制103.1 步进电机控制系统组成103.2 步进电机控制系统原理113.3 脉冲分配113.4 步进电机与微型机的接口电路134 步进电机的运行控制164.1 步进电机的速度控制154.2 步进电机的位置控制154.3 步进电机的加减速控制165 步进电机的程序设计195.1 程序框图195.2 汇编程序20设计总结21致 谢22参考文献2325 步

4、进电机控制系统的设计 第一章 绪论1.1 步进电机及其发展步进电机又称为脉冲电动机或阶跃电动机,它是基于最基本的电磁感应作用,将电脉冲信号转变为角位移或线位移的开环控制元件。单片机控制的步进电机广泛地应用于工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,大型望远镜,卫星天线定位系统等等。随着经济的发展,技术的进步和电子技术的发展,步进电机的应用领域更加广阔,同时也对步进电机的运行性能提出了更高的要求。步进电机的原始模型起源于1830年至1860年,1870年前后开始以控制为目的的尝试,应用于氩弧灯的电极输送机构中,这被认为最早的步进电机。1950年后期晶体管的发明也逐渐应用在

5、步进电机上,对于数字化的控制变得更为容易。到20世纪60年代后期,在步进电机本体方面随着永磁材料的发展,各种实用性步进电机应运而生。步进电机往后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解能、高响应性、信赖性等灵活控制性高的机械系统中。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。图1.1 步进电机的外观图1.2 步进电机国内外的研究与在我国的应用步进电机是国外发明的。国内过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱

6、动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器内部。总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除

7、了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。我国步进电机的研究及制造起始于本世界50年代后期,从50年代后期到60年代后期,主要是高等院校和科研机构为研究一些装置而使用或开发少量产品。我国在文化大革命中开始大量生产和应用步进电机,而且都在各行业使用,其中的驱动电路所有半导体器件、中等耐压的大功率半导体器件也完全国产化。70年代中期至80年代中期为成品发展阶段,新品种高性能电动机不断被开发。至80年代中期以来,由于步进电机精确模型做了大量研究工作,各种混合式步进电机及驱动器作为产品广泛利用。1.3 本文设计内容本设计主要是研究基于单片机的步进电

8、机控制,采用单片机AT89C51和脉冲分配器PMM8713控制步进电机在三相六拍工作方式下的启停控制,正反转控制和加减速控制,以实现基于步进电机的XY工作台两点间的位移控制。第二章 步进电机简介2.1 步进电机的概念步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;您可以通过控制脉冲个数来控制角

9、位移量,从而达到准确定位的目目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。2.2 步进电机的结构、分类与工作原理2.2.1 步进电机的结构步进电机分为转子和定子两部分:1. 定子:由硅钢片叠成的,定子上有6大磁极,每2个相对的磁极(,S)组成一对,共有3对。定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3、2/3,(相邻两转子

10、齿轴线间的距离为齿距以表示),即A与齿1相对齐,B与齿2向右错开1/3,C与齿3向右错开2/3,A与齿5相对齐,(A就是A,齿5就是齿1)。2. 转子:由软磁材料制成,其外表面也均匀地分布着小齿,与定子上的小齿相同,并且小齿的大小相同,间距相同。2.2.2 步进电机的工作原理步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。我们可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时我们也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。在非超载的情况下,电机的转速、

11、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。如下所示的步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图2.1是该四相反应式步进电机工作原理示意图。步进电机控制系统的设计图2.1四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿

12、就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.2所示:图2.2 步进电机工作时序波形图2.2.3 步进电机的分类步进电机分三种:永磁式(PM) ,反应式(VR)和混合式(HB) 永磁式步进电机:永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度 或15

13、度,永磁式步进电动机输出力矩大,动态性能好,但步距角大。 反应式步进电机:反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。反应式步进电动机结构简单,生产成本低,步距角小;但动态性能差。 混合式步进电机:混合式步进电动机综合了反应式、永磁式步进电动机两者的优点,它的步距角小,出力大,动态性能好,是目前性能最高的步进电动机。它有时也称作永磁感应子式步进电动机。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。2.3 步进电

14、机的特点1. 一般步进电机的精度为步进角的3-5%,角位移与输入脉冲数严格成正比,没有累计误差,具有良好的跟随性。2. 步进电机外表不允许较高的温度。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。3. 步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩

15、下降。4. 步进电机自身的噪声和振动较大,带惯性负载的能力较差。5. 由步进电机与驱动电路组成的开环数控系统,既非常简单、廉价,又非常的可靠。同时,它也可以与角度反馈环节组成高性能的闭环数控系统。6. 步进电机的动态响应快,易于启停,正反转及变速。7. 速度可在相当宽的范围内平滑调节,低速下仍能保证获得大转矩,因此,一般可以不用减速器而直接驱动负载。8. 步进电机只能通过脉冲电源供电才能运行,它不能直接使用交流电源和直流电源。2.4 步进电机的驱动步进电动机不能直接接到工频交流或直流电源上工作,而必须使用专用的步进电动机驱动器,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。驱动单元与步进

16、电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简单介绍。2.4.1 单电压功率驱动接口单电压驱动是指电动机绕组在工作时,只用一个电压电源对绕组供电,它的特点是电路最简单。 步进电机使用脉冲电源工作,脉冲电源的获得可通过下图说明,开关管T是按照控制脉冲的规律“开”和“关”,使直流电源以脉冲方式向绕组L供电,这一过程我们称为步进电机的驱动。实用电路如下图所示。在电机绕组回路中串有电阻Rs,使电机回路时间常数减小,高频时电机能产生较大的电磁转矩,还能缓解电机的低频共振现象,但它引起附加的损耗。一般情况下,简单单电压驱动线路中,Rs是不可缺少的。Rs对步进电动机单步响应的改善如图2

17、.3所示:图2.3 单电压功率驱动接口电路图在图2.4.1中,电路中只有一个电源V,电路中的限流电阻R1决定了时间常数,但R1太大会使绕组供电电流减小。这一矛盾不能解决时,会使电动机的高频性能下降,可在R1两端并联一个电容,以使电流的上升波形变陡,来改善高频特性,但这样做又使低频性能变差。R1在工作中腰消耗一定的能量,所以这个电路损耗大,效率低,一般只用于小功率步进电机的驱动。2.4.2 双电压功率驱动接口用提高电压的方法可以使绕组中的电流上升波形变陡,这样就产生了双电压驱动。双电压驱动有两种工作方式:双电压法和高低压法。双电压驱动的基本思路是在较低(低频段)用较低的电压UL驱动,而在高速(高

18、频段)时用较高的电压UH驱动。这种功率接口需要两个控制信号,Uh为高压有效控制信号,U为脉冲调宽驱动控制信号。图2.4中,功率管TH和二极管DL构成电源转换电路。当Uh低电平,TH关断,DL正偏置,低电压UL对绕组供电。反之Uh高电平,TH导通,DL反偏,高电压UH对绕组供电。这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。其电路图如下所示:图2.4 双电压功率驱动接口电路虽然这方法保证了低频段仍然具有单电压驱动的特点,在高频段具有良好的高频特性,但仍没有摆脱单电压驱动的弱点,在限流电阻R上仍然会产生损耗和发热。2.4.3 高低压功率驱动接口高低压驱动的设计思想是,不论电机工作频率

19、如何,均利用高电压UH供电来提高导通相绕组的电流前沿,而在前沿过后,用低电压UL来维持绕组的电流。这一作用同样改善了驱动器的高频性能,而且不必再串联电阻Rs,消除了附加损耗。高低压驱动功率接口也有两个输入控制信号Uh和Ul,它们应保持同步,且前沿在同一时刻跳变,高压管VTH的导通时间tl不能太大,也不能太小,太大时,电机电流过载;太小时,动态性能改善不明显。一般可取13ms。(当这个数值与电机的电气时间常数相当时比较合适)。高低压驱动电路如下图所示:图2.5 高低压驱动接口电路图高低压驱动法是目前普遍应用的一种方法,由于这种驱动在低频时电流有较大的上冲,电动机低频噪声较大,低频共振现象存在,使

20、用时要注意。2.5 步进电机的基本参数2.5.1 步进电机的静态指标术语:(1)相数:产生不同对N、S磁场的激磁线圈对数。常用m表示。(2)拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.(3)步距角:对应一个脉冲信号,电机转子转过的角位移用表示。=360度(转子齿数*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为=360度/(50*8

21、)=0.9度(俗称半步)。(4)定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)(5)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过分采用减小气隙 ,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。2.5.2 步进电机动态指标及术语:(1)步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内

22、,八拍运行时应在15%以内。(2)失步:电机运转时运转的步数,不等于理论上的步数。称之为失步(3)失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。(4)最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。(5)最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。(6)运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。电机一旦选定,电机的静力矩确定,而动态力矩却不然

23、,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。(7)电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。第三章 步进电机的单片机控制3.1 步进电机控制系统组成图3.1 用微型机控制步进电机原理系

24、统图与传统步进控制器相比较有以下优点:1. 用微型机代替了步进控制器把并行二进制码转换成串行脉冲序列,并实现方向控制。2. 只要负载是在步进电机允许的范围之内,每个脉冲将使电机转动一个固定的步距角度。3. 根据步距角的大小及实际走的步数,只要知道初始位置,便可知道步进电机的最终位置。3.2 步进电机控制系统原理3.2.1 脉冲序列的生成图3.2 脉冲的生成脉冲幅值:由数字元件电平决定。 TTL 0 5V CMOS 0 10V 接通和断开时间可用延时的办法控制。要求:确保步进到位。3.2.2 方向控制步进电机旋转方向与内部绕组的通电顺序相关。 三相六拍,通电顺序为: 正转: AABBBCCCA

25、反转: AACCCBBBA 改变通电顺序可以改变步进电机的转向 3.3 脉冲分配实现脉冲分配(也就是通电换相控制)的方法有两种:软件法和硬件法3.3.1 通过软件实现脉冲分配软件法是完全用软件的方式,按照给定的通电换相顺序,通过单片机的IO向驱动电路发出控制脉冲,下面以三相六拍为例上面提到了三相六拍工作方式通电换相得正序为A-AB-B-BC-C-CA-A,,反序为A-AC-C-CB-B-BA-A图3.3 用软件实现脉冲分配的接口示意图注:P1.0:A相驱动P1.1:B相驱动P1.2:C相驱动三相六拍控制字如下表所示:表3.4 三相六拍工作方式的控制字通电状态P1.2P1.1P1.0控制字A00

26、101HAB01103HB01002HBC11006HC10004HCA10105H注:0代表使绕组断电,1代表使绕组通电在程序中,只要依次将这10个控制字送到P1口,步进电机就会转动一个齿距角,每送一个控制字,就完成一拍,步进电机转过一个步距角。软件法在电动机运行过程中,要不停地产生控制脉冲,占用了大量的CPU时间,可能使单片机无法同时进行其他工作(如监测等),所以,人们更喜欢用硬件法。3.3.2 通过硬件实现脉冲分配所谓硬件法实际上就是使用脉冲分配器8713,来进行通电换相控制。8713是属于单极性控制,用于控制三相和四相步进电机,我们选择的是三相六拍工作方式。8713可以选择单时钟输入或

27、双时钟输入,具有正反转控制、初始化复位、工作方式和输入脉冲状态监视等功能,所有输入端内部都设有斯密特整形电路,提高抗干扰能力,使用418V直流电源,输出电流为20mA。本例选用单时钟输入方式,8713的3脚为步进脉冲输入端,4脚为转向控制端,这两个引脚的输入均由单片机提供和控制,选用对三相步进电机进行六拍方式控制,所以5、6脚接高电平,7脚接地。如下图所示:图3.5 89C51单片机系列和8713脉冲分配器的接口图由于采用了脉冲分配器,单片机只需提供步进脉冲,进行速度控制和转向控制,脉冲分配的工作交给8713来自动完成,因此,CPU的负担减轻许多。3.4 步进电机与微型机的接口电路由于步进电机

28、的驱动电流较大,所以微型机与步进电机的连接都需要专门的接口及驱动电路。驱动器可用大功率复合管,也可以是专门的驱动器。总之,只要按一定的顺序改变8713脉冲分配器的 13脚15脚 三位通电的状况,即可控制步进电机依选定的方向步进。由于步进电机运行时功率较大,可在微型机与驱动器之间增加一级光电隔离器(一是抗干扰,二是电隔离。)以防强功率的干扰信号反串进主控系统。电路图如下所示:图3.6 单片机与步进电机的接口电路图1. 图中 K1、K2、K3、K4按钮分别控制步进电机正转、反转、加速、减速。2. 因为我们讨论的是三相六拍的工作方式,所以P0.4和P0.6接高电平,P0.7接低电平。3. P0.0输

29、出步进脉冲。 4. P0.1控制步进电机的转向。第四章 步进电机的运行控制4.1 步进电机的速度控制 步进电机的速度控制是通过单片机发出的步进脉冲频率来实现,对于软脉冲分配方式,可以采用调整两个控制字之间的时间间隔来实现调速,对于硬脉冲分配方式,可以控制步进脉冲的频率来实现调速。控制步进电机的速度的方法可有两种:1. 软件延时法:改变延时的时间长度就可以改变输出脉冲的频率,但这种方法CPU长时间等待,占用大量的机时,因此没有实践价值。2. 定时器中断法:在中断服务子程序中进行脉冲输出操作,调整定时器的定时常数就可以实现调速,这种方法占有的CPU时间较少,在各种单片机中都能实现,是一种比较实用理

30、想的调速方法。定时器法利用定时器进行工作,为了产生步进脉冲,要根据给定的脉冲频率和单片机的机器周期来计算定时常数,这个定时器决定了定时时间,当定时时间到而使定时器产生溢出时发生中断,在中断子程序中进行改变P1.0的电平状态的操作,这样就可以得到一个给定频率的方波输出,改变定时常数,就可以改变方波的频率,从而实现调速。 4.2 步进电机的位置控制步进电机的位置控制,指的是控制步进电机带动执行机构从一个位置精确地运行到另一个位置,步进电机的位置控制是步进电机的一大优点,它可以不用借助位置传感器而只需要简单的开环控制就能达到足够的位置精度,因此应用很广。步进电机的位置控制需要两个参数:1. 第一个参

31、数:步进电机控制执行机构当前的位置参数(我们称为绝对位置),绝对位置时有极限的,其极限时执行机构运动的范围,超越了这个极限就应报警。2. 第二个参数:从当前位置移动到目标位置的距离 我们可以用折算的方式将这个距离折算成步进电机的步数,这个参数是外界通过键盘或可调电位器旋钮输入的,所以折算的工作应该在键盘程序或A/D转换程序中完成。对步进电机位置控制的一般作法是:步进电机每走一步,步数减1,如果没有失步存在,当执行机构到达目标位置时,步数正好减到0,因此,用步数等于0来判断是否移动到目标位,作为步进电机停止运行的信号。4.3 步进电机的加减速控制步距角和转速大小不受电压波动和负载变化的影响,也不

32、受各种环境条件诸如温度、压力、振动、冲击等影响,而仅仅与脉冲频率成正比,通过改变脉冲频率的高低可以大范围地调节电机的转速,并能实现快速起动、制动、正反转、加减速,而且有自锁的能力,不需要机械制动装置,不经减速器也可获得低速运行。它每转过一周的步数是固定的,只要不丢步,角位移误差不存在长期积累的情况,主要用于数字控制系统中,精度高,运行可靠。如采用位置检测和速度反馈,亦可实现闭环控制。步进电机驱动执行机构从A点到B点移动的时,要经历升速,恒速,减速过程,如果启动时一次将速度升到给定速度,由于启动频率超过极限启动频率,步进电机就有失步现象,因此会造成不能正常启动,如果到终点时突然停下来,由于惯性作

33、用 ,步进电机会发生过冲现象,会造成位置精度降低。如果升速非常缓慢的升降速,步进电机虽然不会发生失步和过冲现象,但影响执行机构的工作效率,所以,对步进电机的加减速要有严格的要求,那就是保证在不失步和过冲的前提下,用最快的速度(或最短的时间)移动到有可能指定位置。为满足加减速要求,步进电动机运行通常按照加减速曲线进行。图4.1是加减速运行曲线。加减速运行曲线没有 一个固定的模式,一般根据经验和实验得到的。最简单的是匀加速和匀减速曲线,如下图所示:图4.1 加减速曲线图其加减速曲线都是直线,因此容易编程实现。按直线加速时,加速度是不变的,因此要求转矩也应该是不变的。但是,由于步进电动机的电磁转矩玉

34、转速时非曲线关系,因而加速度玉频率也应该是非曲线关系。因此,实际上当转速增加时,转矩下降,所以,按直线加速时,有可能造成因转矩不足而产生失步的现象。采用指数加、减速曲线或S形(分段指数曲线)加、减速曲线是最好的选择。步进电机的运行可以根据距离的长短分如下3种情况处理:1. 短距离由于距离较短,来不及升到最高速,因此,在这种情况下,步进电机以洁净启动频率运行,运行过程没有加、减速。2. 中、短距离在这样的距离里,步进电机只有加、减速过程,而没有恒速过程。3. 中、长距离在这样的距离里,步进电机不经有加、减速过程,而且还有恒速过程。由于距离较长,要尽量缩短用时,保证快速反应性。因此,在加速时,尽量

35、用接近启动频率启动,在恒速时,尽量工作在最高速。单片机在用定时器法调速时,用改变定时常数的方法来改变输入步进脉冲频率,达到改变转速的目的,对于MCS-51系列单片机,其定时器属于加1定时器。因此,在步进电机加速时,定时常数应增加;减速时,定时常数应减小。如果采用非线性加、减速曲线,要用离散法将加减速曲线离散化,将离散所得的转速序列所对应的定时常数序列,做成表格存储在程序存储器重。在程序运行中,使用查表得方式重装定时常数,这样做比用计算机节省时间,提高系统的响应速是否是否否反转改变P0.0状态P0.0=0?正转加速步数减1极步数减1级步数=0?加速1级计算级步数加速步数=0?指针指向恒速减速步数

36、减1级步数减1复位级步数=0?减速一级计算级步数减速步数=0?是图5.1 基于单片机的步进电机控制程序框图第五章 步进电机的程序设计5.1 程序框图 根据设计任务,可画出控制步进电机正反转,加减速控制,工作方式为双时钟,程序框图如上: 5.2汇编程序本程序的资源分配如下:R0中间寄存器;R1储存速度级数;R2储存级数步数;R3加减速状态指针,加速时指向35H,恒速时指向37H,减速时指向3AH;32H34H存放绝对参数(假设用3个字节),低位在前;35H、36H存放加速总步数(假设2个字节),低位在前;37H39H存放恒速总步数(假设3个字节),低位在前;3AH、3BH存放减速总步数(假设2个

37、字节),低位在前;P0.0正转脉冲输入;P0.1反转脉冲输入;P1.3正转按钮K1;P1.4反转按钮K2;P1.5加速按钮K3;P1.6减速按钮K4;定时常数序列放在ABC为起始地址ROM中。初始R3=35H,R1、R2有初始值。程序如下:ORG 0000HJNB P0.0 ZZ; JNB P0.1 FZ;ZZ:INC R0 CJNE R0,#06H ZZ1; MOV R0,00H;ZZ1:MOV A,R0;MOV DPTR,#ABC;MOVC A,A+DPTR;MOV P0 A;FZ: DEC R0; CJNE R0 #0FFH,FZ1;MOV R0,#05H ;FZ1:MOV A,R0;M

38、OV DPTR,#ABC;MOVC A,A+DPTR;MOV P0,A;ABC:DB 01H 03H 02H 06H 04HRETJS:MOV R0,#35; CJNER0 #0FFH,JS1; INC R0; DEC R0;JS1:DJNC R2 JS2; INC R1;MOV A R1;MOV B,#N;MUL AB;MOV R2 A;JS2:MOV A,35H;ORL A,36H;JNB R3 #37H;MOV R0 #3AH;DEC R0;CJNE R0,#0FFH,JS4;INC R0;DEC R0;JS4:DJNC R2 JS5;DEC R1;MOV A,R1;MOV B,#N;M

39、UL AB;MOV R2,A;JS5:MOV A,3AH;ORL A,3B;JNB R3; RET;设计总结本设计通过单片机AT89C51和脉冲分配PMM8713来控制步进电机的正反转,加减速,以实现基于XY轴坐标的步进电机的运动控制。利用步进电机的转子的旋转带动所联接的丝杆的旋转,丝杆又带动了XY工作台进行直线位移。本设计实现了占用CPU时间少,效率高;易于控制步进电机的转向转速;提高了步进电机的步进精度等。再有,本设计过程考虑比较周全,系统中不仅采用光电隔离电路有效地抑制电磁干扰以提高系统的可靠性,而且还可以方便灵活地控制步进电机的运行状态,以满足不同用户的要求,因此常把单片机步进电机控制

40、电路称之为可编程步进电机控制驱动器。步进电机控制(包括控制脉冲的产生和分配)使用软件方法,即用单片机实现,这样既简化了电路,也减低了成本。基于单片机的步进电机控制系统性能优于传统的步进控制器,具有相应快,控制方便可靠等一系列优点,在机电一体化、数模转换装置、计算机外围设备、自动记录仪、钟表、印刷设备等中亦得到广泛地应用,发展前景广阔。参考文献1 王晓明、 胡晓柏,电动机的单片机控制M.北京航空航天大学出版社,2002年5月第1版:181-2082 刘宝延、 程树康,步进电动机及其驱动控制系统 M .1997年11月第一版:134-1673 史敬灼, 步进电动机伺服控制技术M .2007年3月第

41、2版:23-354 李海滨、 片春媛、 许瑞雪, 单片机技术课程设计与项目实例J. 中国电力出版社,2009版:56-655刘国永, 陈杰平. 单片机控制步进电机系统设计. 安徽: 安徽技术师范学院学报, 2002, 16 (4) : 61-63.6孙笑辉,韩曾晋. 减少感应电动机直接转矩控制系统转矩脉动的方法J. 电气传动, 2001 (1) : 8-11.致 谢首先诚挚的感谢我的论文指导老师,从选题的确定、论文的写作、修改到最后定稿过程中,自始至终都倾注着老师的心血。特别是他多次询问写作进程,并为我指点迷津,帮助我开拓思路,老师以严谨的治学之道、宽厚仁慈的胸怀、积极乐观的生活态度,兢兢业业

42、、孜孜以求的工作作风和大胆创新的进取精神为我树立了一辈子学习的典范,他的教诲与鞭策将激励我在学习和生活的道路上励精图治,开拓创新。她渊博的知识、开阔的视野和敏锐的思维给了我深深的启迪。我以最诚挚的心意感谢张东奎老师。在毕业设计期间,我要感谢许多让我分享他们宝贵经验和知识的老师,教会我正确的思考方式。同时,也要感谢在论文写作过程中,帮助过我朋友们,能够顺利完成论文,离不开他们的帮助,在此表示最深的谢意。1. 基于单片机和DSP的卷绕控制器数据采集和通讯设计 2. 基于MSP430单片机的柴油发电机监控器的设计 3. 基于CPLD/FPGA和单片机的爆速仪设计 4. 基于单片机控制的晶闸管中频感应

43、电源的研制 5. 基于十六位单片机的电力设备故障在线监测装置的设计与算法研究 6. 基于SPCE061A单片机的语音识别系统的研究 7. 基于PIC单片机的生物机能实验装置的研究 8. 基于Motorola MC68HC08系列单片机演示系统的设计与实现 9. 基于TCP/IP协议的单片机与INTERNET互连的设计与实现 10. 基于嵌入式实时操作系统和TCP/IP协议的单片机测控系统 11. AVR 8位嵌入式单片机在车载全球定位系统显示终端中的应用 12. 基于AVR单片机的250W HID灯电子镇流器的研究 13. 基于单片机的TCP/IP技术研究及应用14. 基于P87C591单片机

44、的CAN总线应用层协议的研究 15. 基于单片机实现对二级倒立摆的控制 16. C8051FXXX系列单片机仿真器的研制 17. 基于80C196MC单片机控制的变频调速及配料控制系统的应用研究 18. 基于单片机的胶印机控制系统开发研究 19. 基于凌阳单片机的二次压降全自动测量仪的研制 20. 基于单片机的超声测距系统 21. 基于MOTOROLA单片机的专用电池组智能充电仪 22. 全站仪动态测量的研究以及其与单片机在轨道式龙门吊实时检测中的应用 23. 一种基于80C196KC单片机的新型电子负载的设计24. 基于单片机的对讲系统的研究开发 25. 基于单片机的微波加热沥青路面再生修复机温度控制器的开发与研究 26. 基于单片机ATmega128的嵌入式工业控制器设计 27. 基于单片机的压电闭环微位移控制系统的研究 28. 基于单片机的高压静电除尘整流设备的自动监控系统设计 29. 采用W78E58单片机的酸碱浓度检测技术30. 基于单片机的粮库温度监控系统设计 31. 基于单片机控制的微型轴流式血泵外磁驱动系统研究 32. 基于AVR单片机

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服