1、第41卷第6 期2024年12 月J.At.Mol.Phys.,2024,41:061007(7pp)ITO负载单原子钇吸附NO和CO的第一性原理研究原子与分子物理学报JOURNAL OF ATOMIC AND MOLECULAR PHYSICSVol.41 No.6Dec.2024曹宇13,吴海龙,邱辰,张立志,王泽瑞,钟(1.梧州学院机械与资源工程学院,梧州5430 0 2;2.昆明理工大学材料科学与工程学院,昆明6 50 0 93;3.梧州风光能源装备工程技术研究中心,梧州5430 0 2)摘要:基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,IT O)表面负载单原子Y模
2、型的表面性能进行了第一性原理计算:根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子(Single-atomYsupported onITO,Y/IT O)稳定模型对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算:根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热:且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.关键词:NO;
3、CO;单原子钇;吸附;第一性原理;ITO中图分类号:0 48 5Single-atom Y supported on ITO surface for NO andCO gases adsorption:a first-principles study钟山13,周晓龙2文献标识码:AD0I:10.19855/j.1000-0364.2024.061007CAO Yu,WU Hai-Long,QIU Chen,ZHANG Li-Zhi,WANG Ze-Rui,ZHONG Shan-,ZHOU Xiao-Long(1.School of Mechanical and Resource Enginee
4、ring,Wuzhou University,Wuzhou 543002,China;2.Faculty of Material Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China;3.The Wind and Solar Energy Equipments Engineering Research Center in Wuzhou,Wuzhou University,Wuzhou 543002,China)Abstract:Based on the density
5、functional theory(DFT),the surface properties of a single-atom Y adsorptionon ITO(Indium Tin Oxide,ITO)surface were studied by first-principles calculations.According to the calcu-lated results of total energy about the system,the stability adsorption site of single-atom Y(Single-atom Ysupported on
6、ITO,Y/ITO)is hole site.So,the model structure was designed based on the total energy.The ad-sorption properties of NO and CO gas molecules on ITO and Y/ITO surfaces were studied by first-principles cal-culations.The calculated results of adsorption energy and density of states for NO and CO gas mole
7、cules on ITOand Y/ITO surfaces suggests that the single-atom Y can improve the stability and adsorption property of ITOsurface,and the adsorption behavior for NO and CO gas molecules on Y/ITO surfaces is a spontaneous exot her-mic process.Also,the NO gas molecule is easy to be absorbed to Y/ITO surf
8、ace.Therefore,the Y/ITO surfaceshows certain selectivity for NO.Key words:NO;CO;Single-atom Y;Adsorption;First-principles;ITO收稿日期:2 0 2 3-0 3-0 8基金项目:广西高校中青年教师科研基础能力提升项目(2 0 2 0 KY17011/2021KY0678);梧州学院校级科研项目(2 0 2 0 C003/2022B007);梧州学院校级博士基金项目(2 0 2 1A002)作者简介:曹宇(198 6 一),男,吉林通化人,高级工程师,主要从事第一性原理及材料
9、加工.E-mail:c o n n o r 52 1 q q.c o m通讯作者:钟山E-mail:j o n s o n z h o n g 16 3.c o m061007-1第41卷1 引 言金属氧化物半导体气敏材料是开发最早和应用最广泛的气敏材料,如SnO2、Fe,O 3、Zn O、In,Os、W O、Ni O 等1-3.随着科学技术的发展,金属氧化物半导体气敏材料的发展从单一材料到复合材料,研究方向从简单掺杂到纳米复合材料阶段4-5 锡氧化物(Indium Tin Oxide,IT O)是一种宽禁带高简并的N型半导体材料它是通过在In,O,中掺杂SnO2,以Sn4+替代In3+原子,
10、而形成的一种稳定的复合金属氧化物材料6 ITO气敏材料通常应用于检测NO2、NO、O 2、0 3CO、C,H,O H 等气体7-12 纳米ITO薄膜气敏性能明显高于单一InO,或 SnO,气敏材料,研究者通过掺杂、增加比表面积、异质结等方式提高其气敏性能2,7,9-12 2011年,中国科学院大连化学物理研究所张涛课题组成功制备了Pt,/FeO,单原子催化剂并首次提出了单原子催化剂(SingleA t o mCa t a l y s t s,SACs)的概念13 单原子催化剂因其具有最大的原子利用率和确定的活性中心显著特征,单原子催化剂已经成为催化剂研究领域的热点14-15。单原子催化剂主要应
11、用于电化学、光化学、有机合成、生物医学等领域16-2 0 。由于单原子催化剂具有独特的电子和化学特性,研究者们开始探索单原子材料在气敏传感领域的应用2 1-2 3 然而,原子与分子物理学报1,原子的总能量收敛标准设为1.0 10-5eV/atom,力收敛标准设为0.0 2 eV/A.吸附能6 定义为:Ead=Esu+x-Esu-Ex,其中Ead,Es u+x,Es u和Ex分别代表吸附能,吸附气体(或单原子)的总能量,吸附前的总能量和吸附气体(或单原子)的能量:根据该公式定义,吸附能越低,吸附结构相对更越稳定,如果计算结果显示吸附能是负值,表明吸附过程为放热过程,吸附后的结构将更加稳定;如果计
12、算结果显示吸附能为正值,表明吸附过程要吸热,吸附不容易进行,吸附后的结构也将不稳定,Inz0;晶体的生长方向容易发生在(10 0)、(110)、(111)低指数面,In,0,的(110)的表面能量最低6 将Sn替代In原子位置进行能量计算,体系能量最低的位置为(1)和(2)位置,具体如图1所示为了保证掺杂后的6 层原子模型与实际纳米ITO薄膜成分一致,既InzO,:SnO2=9:1(质量比):所以(1)位置由10 0%Sn替换了In的位置,(2)号位置掺杂比为Sn:0=64.3%:35.7%.第6 期(1)(2ITO负载单原子复合材料的气敏性能研究较少,相应的吸附微观机理的解释还比较缺乏:因此
13、,本文建立了ITO表面负载Y原子(Sin-gle-atom Y supported on ITO,Y/IT O)模型模拟纳米ITO薄膜负载单原子钇复合气敏材料:采用基于第一性原理的密度泛函理论方法,运用Dmol3软件包,模拟计算负载Y原子的ITO表吸附NO气体模型,并对几何结构、吸附能、态密度等进行分析为纳米ITO薄膜负载单原子钇复合气敏材料研发提供理论支撑。2模型与计算方法In,O,属于立方晶系结构,空间对称群为Ia-3,空间群号2 0 6,晶胞参数=b=c=1.0117nm.计算过程中交换关联能采用广义梯度近似(G e n e r a l i z e d G r a d i e n t A
14、 p p r o x i ma t i o n,G G A)下的PBE泛函2 4-2 5,平面波展开的截断能设为50 0eV,M o n k h o r s t-Pa c k 型k点网格分布设为2 2图1In,0,的(110)晶面掺杂位置Fig.1The Sn-doped sites in surface(110)of In,O33丝结果与讨论3.1负载模型建立和吸附能分析ITO表面模型是不规则结构,单原子Y可能负载位点较多,现将负载位点归类为:铟(或锡)原子顶位(Tm),氧原子顶位(T。),桥位(B),空位(H)计算结果:负载模型中最低吸附能为-6.912eV,对应位点为空位(H),即ITO
15、表面负载单原子钇(Y/ITO)模型如图2 所示:3.2吸附模型建立和吸附能分析在稳定Y/ITO表面结构的基础上,计算模拟单个NO和CO气体分子的吸附性能Y/ITO表面模型是不规则结构,气体分子可能吸附位点较多,现将负载位点归类为:、锡和原子顶位061007-2第41卷图2 ITO表面负载单原子亿模型Fig.2 Single-atom Y supported on ITO surface(T x),氧原子顶位(T。),桥位(B),空位(H).根据吸附能定义计算,Y/ITO对NO吸附模型中最低吸附能为-2.6 40 eV,对应位点为空位(H),气体分子与水平面存在40 左右的倾角,具体如图3所示在
16、相同位置上,ITO 对NO的吸附能为-0.096eV.Y/ITO对CO吸附模型中最低吸附能(a)ITO-NO曹宇,等:ITO负载单原子钇吸附NO和CO的第一性原理研究ITO对NO气体分子更敏感.(b)1.288第6 期为-0.0 51eV,对应位点为氧原子顶位(T。)气体分子与水平面存在40 左右的倾角,具体如图4所示:在相同位置上,ITO对CO的吸附能为0.468 eV.Y/ITO对NO吸附能小于ITO对NO 吸附能,说明由于单原子Y负载增强了ITO表面对NO吸附性能,且吸附能均为负值,说明吸附自发行为,且过程放热。Y/ITO对 CO吸附能小于ITO对 CO吸附能,说明由于单原子Y负载增强了
17、ITO表面对CO吸附性能,Y/ITO吸附能为负值,说明吸附自发行为,且过程放热,而ITO吸附能为正值,说明吸附非自发行为,吸附过程需要吸热,吸附结构不稳定.Y/ITO对NO的吸附能大于CO吸附能,说明NO更容易吸附在Y/ITO表面,即Y/ITO-NO(c)YITO-NO(d)Y/ITO-NO2.1861.505图3吸附模型:ITO表面吸附NO气体分子俯视图(a)、IT O 表面吸附NO气体分子主视图(b)、Y/ITO表面吸附NO气体分子俯视图(c)、Y/IT O 表面吸附NO气体分子主视图(d)Fig.3 The adsorption models:(a)The vertical view o
18、f NO adsorbed on ITO surface.(b)The main view ofNO adsorbed on ITO surface.(c)The vertical view of NO adsorbed on Y/ITO surface.(d)The mainview of NO adsorbed on Y/ITO surface3.3态密度分析ITO表面负载单原子Y前后的(稳定结构模型)的态密度如图5(a)和(b)所示ITO表面与Y/ITO表面对比,Y/ITO表面态密度的第二个峰(E=15.5e V)的峰值明显减小,第三个峰(E-10 eV)的域有所减小费米能级(E=0 e
19、V)对应的态密度数值略微减小,使得表面更稳定,这也说明了单原子Y的负载位置的合理性ITO表061007-3第41卷原子与分子物理学报(a)ITO-CO第6 期(b)ITO-CO(c)YIITO-CO(d)2.2411.3532.411YIITO-CO2.387图4吸附模型:ITO表面吸附CO气体分子俯视图(a),I T O 表面吸附CO气体分子主视图(b),Y/I T O 表面吸附CO气体分子俯视图(c)和Y/ITO表面吸附CO气体分子主视图(d)Fig.4The adsorption models:The vertical view of CO adsorbed on ITO surface
20、(a),main view of COadsorbed on ITO surface(b),vertical view of CO adsorbed on Y/ITO surface(c),and mainview of CO adsorbed on Y/ITO surface(d).140-(a)120-10080-60-40200-22-2018161412-10-8140-(b)TotalITO0TotalY/ITO120100806040-206-22201816-1412102140(c)120-10080-60-4020-022-20-18-16-14-12-10-8图5态密度图:
21、ITO表面态密度图(a),Y/IT O 表面态密度图(b),IT O 表面吸附NO态密度图(c)和Y/ITO表面吸附NO态密度图(d)Fig.5 Density of states diagrams:The density of states diagram of ITO surface(a),density ofstates diagram of NO adsorbed on ITO surface(b),density of states diagram of Y/ITO sur-face(c),and density of states diagram of NO adsorbed on
22、 Y/ITO surface(d).140(d)TotalITO-NO6Energy(eV)061007-4-TotalY/ITO-No120-100-80-6040-20-22-20-18-16-14-12-10-8-第41卷面负载单原子Y前后吸附NO和CO气体分子的态密度如图5(c))和(d);7(c)和(d)所示:ITO表面与Y/ITO表面吸附气体分子(NO和CO)对比,Y/ITO表面吸附气体分子态密度的第二个峰(E=15.5e V)的峰值明显较小,第三个峰(E-10eV)的域明显较窄,费米能级(E=0 eV)对应的态密度数值也明显较小。再结合Y/ITO表140(a)1201008060
23、40200-22-20-18-16-14-12-10-8-6-48(c)765432-曹宇,等:ITO负载单原子吸附NO和CO的第一性原理研究TotalY/ITO-No0246-22-20-18-16-14-12-10-8-6-4-28(d)D-Y6412第6 期面吸附气体分子态密度(如图6 和7 所示)中Y原子贡献,这说明负载单原子Y使得表面体系更稳定Y/ITO表面吸附NO与Y/ITO表面吸附CO态密度对比(如图5(d)和图7(d),在费米能级(E=O e V)对应的态密度数值:Er-NoEr-co这说明NO的吸附模型比CO的吸附模型更稳定,这与吸附能的比较结果是一致的。140(b)1201
24、00806040200D-Y/ITO24D-NO10-22-20-i8-16-14-12-i0-8-6-4-20图6 Y/ITO表面吸附NO气体分子态密度:总体态密度(a),IT O 分态密度(b),Y分态密度(c)和NO分态密度(d)Fig,6 The density of states diagrams of NO adsorbed on Y/ITO surface:The total density of states diagram(a),partial density of states diagram of ITO(b),partial density of states diag
25、ram of Y(c),and par-tial density of states diagram of NO(d).4结论本文采用基于DFT 的第一性原理方法,以负载单原子Y的ITO表面(Y/ITO)模型为研究对象,并对Y/ITO吸附NO和CO前后模型进行计算,模拟研究ITO薄膜负载单原子钇复合材料气敏性能。结果表明:(1)通过对Inz0,的(110)晶面进行表面掺杂Sn模型进行能量分析,确定了最容易掺杂的两个位置结合实际纳米ITO薄膜成分,最终确定了稳定的ITO表面模型,通过对ITO表面负载单原子Y模型进行吸附能和态密度分析,确定了稳定的负载单原子Y的ITO表面模型,单原子钇最容0246
26、-22-20-18-16-14-12-10-8-6-4-20 2*Energy(eV)易吸附位点为空位(H).(2)通过对Y/ITO表面稳定模型建立吸附NO气体分子吸附模型的吸附能和态密度分析,确定了稳定的Y/ITO表面吸附NO气体分子模型,即NO气体分子最容易吸附位点为空位(H),气体分子与水平面存在40 左右的倾角通过对Y/ITO表面稳定模型建立吸附CO气体分子吸附模型的吸附能和态密度分析,确定了稳定的Y/ITO表面吸附CO气体分子模型,即NO气体分子最容易吸附位点为氧原子顶位(TO),气体分子与水平面存在40 左右的倾角:(3)通过对比ITO表面和Y/ITO表面吸附气体分子(NO和CO)
27、的吸附能和态密度可知,负载061007-546第41卷图7ITO表面态密度图(a),Y/IT O 表面态密度图(b),IT O 表面吸附CO态密度图(c)和Y/ITO表面吸附co 态密度图(d)Fig.7 The density of states diagram of ITO surface(a),density of states diagram of CO adsorbed on ITO surface(b),density of states diagram of Y/ITO surface(c),and density of states diagram of CO adsorbed
28、 on Y/ITO surface(d).140(a)120-10080-6040-2002624-222018-1614-1210868(c)6原子与分子物理学报140(a)120-10080604020-0-22-20-18-16-14-12-10-8140-(c)120100806040120-0-2220-18-16-1412-10-8-6-420246810262422-2018-16-1412-1088D-Y(d)6第6 期140-(b)TotalITO0246-22-2018-16-14-12-108-6-4-20246140(d)TotalITO-CO246-22-2018-1
29、6-14-12-10-8-6-42Energy(eV)140(b)-TotalY/ITO-CO-2TotalY/ITO120-100806040-200120-1008060-40-20120100806040200+TotalY/ITO-CO046D-Y/ITO46810D-CO41241226242220-18-16-14-1210 8 6图:Y/ITO表面吸附CO系统的总体态密度(a),I T O 分态密度(b),Y分态密度(c)和CO分态密度(d)Fig.8The total density of states diagram(a),partial density of states
30、diagram of ITO(b),partial density of states dia-gram of Y(c),and partial density of states diagram of CO(d)surface for the system of CO adsorbed on Y/ITO.0246810-26-24222018-16-14-12-10-86-420246810Energy(eV)061007-6第41卷单原子Y提高了体系的稳定性和气敏性能通过对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度可知,Y/ITO表面对于小分子气体具有一定选择性,NO气体分子更
31、容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感参考文献:1Song X L,Yan C Y,Zhang Y,et al.Research pro-gress and prospect of gas sensitive materials J.Ma-ter.Rep.,2012,26:36(in Chinese)2You X L.Research progress on metal oxide gas sensingmaterials for common gasesJ.Mater.Mech.Eng.,2015,39:7(in Chinese)3Zhang J Y,Meng H R B
32、 L,Zhang Z Y.Research pro-gress on metal oxide semiconductor based triethylaminegas sensors J.Inorg.Chem.Ind.,2021,53:67(in Chinese)4Wen Z.Study of metal oxide semiconductor nanomateri-als for gas-sensing applications and their self-pow-ered sensing systems D.Zhejiang Univ.,2016(inChinese)5Zhou R.Pr
33、eparation and gas sensing properties of semi-conductor metal oxide nanomaterials D.XiamenUniv.,2018(in Chinese)6Cao Y.First principles study on adsorption property ofITO and influences of noble metal loading on it adsorp-tion property D.Kunming Univ.Sci.Technol.,2013(in Chinese)7Yan H Y,Fang F,Chen
34、Z Q,et al.Response im-provement of In,O,hot-wire gas sensor doped by SnJ.J.Mater.Sci.:Mater.Electron.,2018,29:5173.8Zhou Y H,Zhou X L,Cao J C,et al.Effect of Pdweight load on CO gas-sensing properties of porousITO materialsJ.J.Kunming Univ.Sci.Technol.,2015,40:12(in Chinese)9Zhou J Y,Bai J L,Zhao H,
35、et al.Gas sensing enhan-cing mechanism via doping-induced oxygen vacanciesfor gas sensors based on indium tin oxide nanotubesJ.Sens.Act.B,2018,265:273.10 AArun M,Yong S H.Plasma-assisted chemical vaporsynthesis of indium tin oxide(IT O)n a n o p o w d e r a n dhydrogen-sensing property of ITO thin f
36、ilmJ.Ma-ter.Res.Exp.,2018,5:5.11 Liu D,Chen Q F,Chen A,et al.Self-powered gassensor based on SiNWs/ITO photodiodeJ.RSC Adu.,2019,9:23554.曹宇,等:ITO负载单原子吸附NO和CO的第一性原理研究2021,52:8042(in Chinese)23Lei G L,Pan H Y,Mei H S,et al.Emerging singleatom catalysts in gas sensorsJ.Chem.Soc.Rev.,2022,51:7260.24 Pos
37、ada-Borbon A,GrOnbeck H.Hydrogen adsorp-tion on In,0,(111)and In,O,(110)J.Ph y s.Chem.Chem.Phys.,2020,22:16193.25Aaa A,Kh B,Br C,et al.Room temperature gassensing mechanism of SnO,towards chloroform:Com-paring first principles calculations with sensing experi-ments-science directJ.Appl.Suf.Sci.,2021
38、,554;149603.061007-7第6 期12 Ko D,Choi J,Seo J,et al.Chemical sensing proper-ties of indium-tin-oxide(ITO)printed films fabri-cated on biodegradable plastics J.AIP Adv.,2020,10:045228.13Qiao B,Wang A,Yang X,et al.Single-atom cataly-sis of CO oxidation using Pt,/Feo,J.Nat.Chem.,2011,3;634.14Zhuang J H,
39、Wang D S.Current advances and futurechallenges of single-atom catalysis J.Chem.J.Chin.Univ.,2022,43:21(in Chinese)15Zheng G K.Theoretical studies on single atom or singlecluster electrocatalysts for ammonia synthesis D.Zhe-jiang Univ.,2022(in Chinese)16 Zhang N,Ye C,Yan H,et al.Single-atom site cata
40、-lysts for environmental catalysisJ.Nano Res.,2020,13:3165.17 Li J,Li Y D,Zhang T.Recent progresses in the re-search of single-atom catalystsJ.Sci.Chin.Ma-ter.,2020,63:889.18 Mitchell S,Javier P R.Single atom catalysis:a dec-ade of stunning progress and the promise for a brightfutureJ.Nat.Commun.,20
41、20,11:4302.192Zhu T,Han Y W,Liu S,et al.Progress in electroca-talysis by single-atom site catalysts.J.Chem.Ind.Eng.Prog.,2022,41:666(in Chinese)20Yao Q,Yu Z Y,Huang X Q.Progress in synthesisand energy-related electrocatalysis of single-atomcatalystsJ.Chem.J.Chin.Univ.,2022,43:53(in Chinese)21 Yuki N,Jun H,Seiji Y,et al.Single-atom Pt in in-termetallics as an ultrastable and selective catalyst forpropane dehydrogenationJ.Nat.Commun.,2020,11:2838.22Deng Z M,Xu D,Ma Y X,et al.Preparation andcharacterization of single atom materials and their appli-cation progress in gas sensors J.J.Funct.Mater.,