1、空化对尾水管区域驼峰特性影响研究李琪飞12,谢耕达,李占勇1,韩天丁1,刘思琪3(1.兰州理工大学能源与动力工程学院,甘肃兰州7 3 0 0 5 0;2.甘肃省流体机械及系统重点实验室,甘肃兰州7 3 0 0 5 0;3.西华大学流体及动力机械教育部重点实验室,四川成都6 10 0 3 9)液压气动与密封/2 0 2 4年第3 期doi:10.3969/j.issn.1008-0813.2024.03.011摘要:为了研究水泵水轮机空化对驼峰特性的影响,采用SSTk-端流模型和Z-wart空化模型对全流道进行了三维定常数值模拟计算,并分析了不同工况点下尾水管在驼峰区域的水力性能和内部流动状态。
2、研究结果表明,不同工况点下,流量大小会改变尾水管区域液流的流动方向,从而产生偏心涡带使尾水管区域出现不稳定性,造成机组振动和噪声;单相计算结果比空化计算结果更早受到剪切流的影响。来流与壁面射流相互作用产生漩涡,出现回流现象。在速度梯度变化方面,空化计算结果的速度值要比单相的值高,能量损失有所增加。关键词:水泵水轮机;驼峰特性;空化;偏心涡带;数值计算中图分类号:TH137;TK734Effect of Cavitation on the Hump Characteristics of the Tailpipe RegionLI Qi-fei-2,XIE Geng-d,LI Zhan-yong,
3、HAN Tian-ding,LIU Si-qi?(1.School of Energy and Power Engineering,Lanzhou University of Technology,Lanzhou 730050,China;2.State Key Laboratory of Fluid Machinery and Systems,Lanzhou 730050,China;3.Key Laboratory of Fluid and Power Machinery,Ministry of Education,Xihua University,Abstract:In order to
4、 study the effect of pump turbine cavitation on the hump characteristics,three-dimensional constant numerical simulationsof the full flow channel were carried out using SST k-turbulence model and Z-wart cavitation model,and the hydraulic performance andinternal flow state of the tailpipe in the hump
5、 region under different operating points were analyzed.The results show that the flow magnitudechanges the flow direction in the tailpipe region at different operating points,thus generating eccentric vortex bands that cause instability in thetailpipe region,resulting in unit vibration and noise;the
6、 single-phase calculation results are affected by the shear flow earlier than thecavitation calculation results.The incoming flow interacts with the wall jet to produce vortices and backflow phenomenon.In terms of velocitygradient variation,the cavitation calculation results in higher velocity value
7、s than the single-phase ones,and the energy loss increases.Key words:pump-turbine;hump characteristics;cavitation;eccentric vortex band;numerical calculation0引言抽水蓄能电站在电力系统中有调峰、填谷、调频、调相和事故备用等多种功能的特殊电源,已成为我国电力系统中的重要组成部分。水泵水轮机的驼峰特性是普遍存在的现象,会影响机组的安全稳定运行,改变水泵水轮机在驼峰区域的滞留时间是非常重要的 2 。陶然等对水泵水轮机泵工况的空化特性进行了收稿日
8、期:2 0 2 3-0 4-2 7基金项目:国家自然科学基金(5 2 0 6 6 0 11)作者简介:李琪飞(19 7 5-),男,甘肃靖远人,副教授,博士,研究方向为抽水蓄能。58文献标志码:A文章编号:10 0 8-0 8 13(2 0 2 4)0 3-0 0 5 8-0 9Chengdu 610039,China)数值计算,发现数值计算对空化产生的位置和范围具有较高的模拟精度,并判定空化初生准则即气泡体积分数从0.0 0 0 1%变为0.0 0 1%3 。LIDY等应用完全空化模型和RNGk-湍流模型模拟了水泵水轮机驼峰区的空化流动,发现了水泵水轮机的驼峰特性与空化性能相关 4。刘厚林等
9、比较了3 个不同空化模型在离心泵空化性能数值计算中的应用,着重分析了设计工况下Kunz 模型得到的空化内流场 5 。DANC等 6 采用非定常DES方法对扩散段内部流态做研究发现流体与活动导叶间存在冲角,随着冲角的变化扬程曲线下出现了马鞍区域。姚洋阳等 7 发现与舒峻峰相同的结论,通过瞬态数值模拟研究发现了驼峰区域与尾水管的二次流有关联。李琪飞等 8 对可逆式水轮机在驼峰Hydraulics Pneumatics&Seals/No.3.2024区间的频普进行分析,发现在不同的波动区域存在一为了保证数值计算结果可行可靠,本次网格划分定规律。管子武等 9 有进一步对水泵水轮机各个流采用商业软件AN
10、SYS的子功能ICEM进行全流道六面域进行对比发现,在无叶区的压力波动要比其他区域体网格划分,网格划分结果如图2 所示。由于偏离了的压力波动更加严重。覃永粼等 10 运用欧拉方程发最佳工作点,流道入口处的入流并不对称,所以必须对现在转轮出口扬程一定时,在转轮半径较大,叶片进全部流道进行模拟。由于蜗壳和固定导叶的结构比较口角较小的方案能增加驼峰裕度,能够有效的改善驼复杂,为了满足适应复杂物理边界条件的要求,采用了峰特性。非结构化的四面体网格,其他部件区域采用六面体结构网格,以保证较小的计算量和较高的精度。1设计流程及模型建立1.1物理模型以国内某抽水蓄能电站混流式水泵水轮机模型为研究对象,过流部
11、件由蜗壳、固定导叶、活动导叶、转轮和尾水管组成,示意图如图1所示,具体参数如表1所示。图2 水泵水轮机网格分布Fig.2Pump turbine grid distribution为了保证数值计算结果可行可靠,本次网格划分Yplus图1模型水泵水轮机计算区域Fig.1 Model pump turbine calculation area表1模型水泵水轮机几何参数Tab.1Geometric parameters of model pump turbine参数名称叶片数/个活动导叶/个转轮高压侧直径/mm蜗壳进口直径/mm导叶高度 bo/mm固定导叶数/个导叶高度/mm转轮低压侧直径/mm尾水
12、管出口直径/mm额定水头/m最小水头/m最大水头/m额定转速/rmin=1水泵水轮机安装高程/m测功机功率/kW采用商业软件ANSYS的子功能ICEM进行全流道六面体网格划分,网格划分结果如图3 所示。用壁面函数法在壁面位置添加边界层网格,由于转轮区域的流量比水泵水轮机其他位置流域大,因此选择看转轮区域y+分布,由图4可知y+小于3 0,符合要求。数值920473.631566.722066.723006601901752200250050.02500302724211815129630Fig.3Distribution of blade+wall surface经过网格无关性验证,网格数达到
13、5 5 0 万时,计算结果在误差允许范围之内,并且随着网格数的增加,参考值Hm/H。趋于平缓,其中Hm为试验水头,H。为计算水头,当试验水头与计算水头的比值愈趋近于1,表示计算结果越准确,最终确定网格数量为6 10 万。59图3 叶片Y+壁面分布液压气动与密封/2 0 2 4年第3 期1.02H/H1.011.00350400450500550600650700750网格单元数/万图4网格无关性验证Fig.4Mesh independence verification2数值模拟方法2.1瑞流模型本研究采用Zwart空化模型求解气相体积分数即:3muc(1-,)pvFRem=F3Pv2P-PvR
14、BV3式中,m水相和蒸汽相的质量传输率nuc成核位置初始气相体积分数一空泡体积分数RB一空泡半径F。一一蒸发过程的经验系数F。一凝结过程的经验系数PV饱和蒸汽压力p一气泡密度pI一流体密度2.2边界条件此次实验尾水管的进口位置采用质量流量进口,蜗壳为总压出口。将每个划分好网格的部件用interface面连接,壁面采用无滑移网格,近壁面采用标准壁面函数。首先,用SSTk-湍流模型做清水的单相计算,用清水的结果作为基础,加入空化模型计算。饱和蒸气压力设置为3 5 40 Pa,体积分数分别设为1和0。在求解的过程用SIMPLEC算法实现速度与压力的耦合作用。压力项差分的实现是采用了二阶迎风差分格式,
15、差分精度为10,转轮的旋转轴为Z轴,转速给定合理的数值。在非稳态计算中将时间步长设置为转轮旋转3 所需要的时间,每一个时间步长迭代10 次,在进出口静压值表现出规律性变化时认定为计算已收敛,60计算总时间步长为12 0 0 步即转轮旋转10 圈,从而获得精确的模拟结果。3可靠性验证3.1试验研究试验测试系统如图5 所示。3815E1021Pv-PPPv3P1216111.偏流器2.喷嘴3.低压箱4.测功电机5.扭矩测量系统6.水泵水轮机7.高压箱8.支架9.流量计10.封闭系统回路管11.水泵12.散开系统回水管PPv13.称重传感器14.称重筒15.水冷系统16.换向管路图5 测试系统原理图
16、Fig.5Test system schematic3.2试验与模拟结果对比对水泵水轮机在不同流量下进行全流域三维数值计算,为准确分析机组驼峰特性形成的机理,根据数值计算结果与试验数据做对比来绘制出扬程-流量曲线(图6)和扬程-效率曲线(图7)。其中本研究的设计工况流量为QBep=0.392m/s,H=30m,N=133.27,表2 给出不同流量工况参数表。35EXP34MIXSIN3332w/H31302928270.15Fig.6Comparison of head-flow curves14120.200.25Q/m3s-1图6 扬程-流量曲线对比0.300.350.400.62QBEp
17、Sin 0.62QBepMul 0.620BepSin 0.62QBepMulHydraulics Pneumatics&Seals/No.3.2024能量损失会比单相模型计算结果更多。90Velocity858075%/u706560550.15Fig.7Comparison of efficiency-flow curves表2 不同流量工况参数表Tab.2Table of parameters for different flow conditions工况点Q/m s-110.17320.20930.24140.26150.28260.31370.39280.33590.358100.3
18、924数值分析4.1尾水管流动特性分析Sin 表示单相计算结果,Mul 表示多相计算结果,图左和右分别表示为尾水管直锥段的流线图和平均速度云图分布。图中左测为单相和双相速度流线图,右侧为单相和双相速度云图。由图8 可以看出在偏离最优工况的条件下,不同工况点的流动方式基本一致,但是尾水管单双相的内部流动存在差异。单相计算结果比多相计算结果更早受到剪切流的影响,来流与壁面射流相互作用产生漩涡,出现回流现象。相反在速度梯度变化方面,多相计算结果的速度梯度变化要比单相计算结果变化更加明显,尤其是在直锥段两侧壁面位置。多相流动在中速区占比较大且靠近转轮进口,尾水管出口位置速度高,在进出口位置速度变化大,
19、导致ms-1-EXPMIX-SIN0.200.25Q/m3.s-1图7 效率-流量曲线对比H/mN/kW34.6792.5633.8399.8133.26104.2733.37105.1732.81114.8733.00121.0032.21126.5731.23128.2530.16129.3629.12133.270.680 Bep Sin 0.680 BepMul 0.680 BpSin 0.680 epMul0.300.350.40n/%62.4169.2775.1780.2679.0683.5883.2885.5689.1989.18图8 尾水管单双相速度对比图Fig.8 Compa
20、rison of single and dual phasevelocity of tailpipe图9 尾水管各截面位置分布图Fig.9Distribution of each section of the tail pipe0.80QBP0.78QBEP图10 尾水管不同截面位置平均速度Fig.10Average velocity at different section positionsof tailpipe4.2尾水管瑞动能分析图9 为尾水管湍动能截面布置方式,由图10 可知在略小于最优工况点下湍动能分布基本上保持一致,但是随着流量的减小截面处的湍动能发生改变,当流量降低到0.8 0
21、 QBEp工况点时,在靠近尾水管出口位置截面湍动能出现明显的升高,在0.7 5 QBEp工况点时,湍动能较高的出现在壁面周围,这种现象表明在靠近尾水管出口端的能量损失较大,但远离出口端的其它截面湍动能并未出现明显变化,当流量下降到0.6 8 QBEP工况点时,高动能圆环出现在下部截面,这说明在该工况点,该位置原有的稳定流动已经遭到破坏,造成尾610.75QBP0.68QBEP液压气动与密封/2 0 2 4年第3 期水管直锥段的壁面位置流动出现紊乱,随着流量进一步降低,受涡带运动旋转的影响,中间向下游位置移动,导致动能区向尾水管中间区域流动,且流量越小,高动能区占比越大。同时受空化的影响,中下游
22、区尾水管收缩段有回流的产生。的起始点为0.8 0 QBEp工况点,这可能与水泵水轮机进入驼峰区间的工况点有一定关系。4703kdts1-dts5-Mul-dtxy450-Mul-dtxy300-Mul-dtxy200-Mul-dtxy150-Mul-dtxyoutletdt-outlet图11尾水管子午面三维流线速度图Fig.11Three-dimensional flow velocity diagramof the radial surface of the tailpipe0.60.50.41.3y-/l0.30.20.10.0F0.5图12 尾水管不同截面位置瑞动能Fig.12 Tur
23、bulent kinetic energy at differentcross-sectional positions of the tailpipe4.3尾水管各截面特性分析为研究尾水管出现回流的原因,如图11分别在距离尾水管出口处的15 0,2 0 0,3 0 0,45 0 mm的位置建立断面。通过图12 可以看出,随着流量逐渐减少,尾水管不同截面处的平均瑞动能会随流量减小越来越高,但是尾水管截面位置的不同,端动能也会存在一定差异,能量损失较大处在尾水管出口端,出口端相对于其它位置湍动能的变化会更大。可以发现越靠近尾水管出口,能量损失越大,这表明尾水管出口位置为波动频繁的主要源头。在靠近出
24、口位置的截面进行分析可以看到在0.8 0 QBEp工况点端动能上升趋势更大,这可能与转轮流道受到空泡影响出现能量的传递和转换有关。从速度旋度的曲线图13 可以看出,在设计工况下,流量小,速度也小,随着流量继续变化后,各点的速度保持一致,而在各别工况点处出现速度增加的现象。对于靠近尾水管出口的截面能够直观地看到速度变化6200.5图13 尾水管不同截面位置速度Fig.13Tailpipe velocity at different section positions-Mul-dtoutlet4.4尾水管回流特性分析Mul-dt150通过上文分析,水泵水轮机在尾水管区域出现干-Mul-dt200-
25、Mul-dt300-Mul-dt4500.60.7Q/QBP0.6扰主频源是由转轮与尾水管交界处以及尾水管弯肘段共同影响的。在空化影响下,部分流体产生反方向的回流情况,且主要集中在尾水管的弯肘段和直锥段。由于正方向和反方向的流体相互对冲会影响水流的正常流动,同时受空泡对尾水管直锥段的影响,回流和空泡对尾水管区域产生双重效应。在尾水管出口位置出0.80.90.7QIQBEP1.01.10.8现大量的涡旋使得水泵水轮机水力特性大幅度降低,尾水管出水量也会减少。转轮叶片在偏离最优工况下会出现振动剧烈的情况,受连带效应的作用会在尾水管直锥段产生中心涡带,空化程度及流量的大小的变化,会使尾水管直锥段区域
26、的涡带位置出现变化,有的涡带可能在中心区域,有的涡带可能在壁面区域,不同形状的涡带速度的大小也会发生变化,动能也随之改变。在靠近转轮部分也就是直锥段流体速度较大,直锥段中心位置要比两侧壁面处速度高,流体在弯肘段区域速度有所下降,在收缩段出现紊乱流场。原因是同时受到惯性力和黏性力的作用,根据牛顿定律,两者互不平衡后出现流动不稳定现象出现顺时针旋转和逆时针旋转的漩涡,杂乱交替排列在尾水管出口处。这也是液流环绕圆柱体的卡门涡街现象,它会增大水泵水轮机的能量损失,对机组产生一定影响。由图14我们可以发现,在弯肘段都存在速度方向与流动方向不同的回流情况,并且主要在中下游段发生。特征面上分布的速度也有所不
27、同,两侧速度较大,中间速度较小,这也是受到弯肘段外侧的影响,壁面对流体流动的干扰造成的。随着时间的推移,速度的方向也是由两侧向中间移动,这也是漩涡产生的原因。0.91.01.143Hydraulics Pneumatics&Seals/No.3.2024在不同的截面下回流的情况也是有所不同的,靠近弯壁面后会对壁面冲击,反过来壁面也会冲击尾水管,导肘段的截面,因沿程效应的影响,在这个位置水流的流致尾水管壁面区涡带等值面分布速度增大。在大流量速比较大,流场分布极其复杂,使得回流情况严重,靠工况下,尾水管流动变化小,说明涡带受到尾水管的连近扩散段的截面流体的流动几乎保持平稳,回流情况带作用,流动特性
28、较好,受到回流的影响小,不会出现就比较少了。所以整体来讲回流是受到漩涡流动的影大量的漩涡,所以涡带的形态基本保持不变,涡带等值响,这也是压力脉动在弯肘段受到主干扰源的原因,严面的速度分布会保持在9.5 8 m/s左右。为进一步研究重影响了尾水管下游区域的流动特性,使得尾水管出涡带的形状及旋向对尾水管能量损失的大小,特地建现振动和噪声。立一个平行于xy轴的面来分析涡带在不同位置的能量耗散情况。VelocltyMagn211.755图14尾水管子午面速度回流图Fig.14 Tailpipe meridional surface velocity return diagram4.5尾水管涡带演化研究
29、不同流量对尾水管内流场产生的影响是不同的,流量的大小会影响液流从转轮进人到尾水管后的速度和方向,从而会影响尾水管的内部流动特性,会引起机组的不稳定性和振动情况,尾水管产生中心涡带与转轮绕流流动方式存在密切关联。受转轮迟滞效应的作0.80QBEPXim0.75QBEP0.80QBEP0.75QBEPXim用,液流会继续停留在转轮流域来干扰尾水管区域的onitude均匀流场,造成尾水管区域产生的中心涡带转变为偏心涡带。且涡带随着转轮流量和流速方向改变,而发生由右向左的旋向运动。同时,在壁面位置和中心位置的涡带对尾水管流域的影响是不同的,能量的耗散也存在差异。涡带逐渐向内部旋转,并且涡带由无旋X/m
30、0.68QBEP转方向的细条下锥形变成了带有旋转方向的螺旋状,最终形成螺旋状,进而会影响到尾水管的内部流动。为了研究尾水管的涡带是如何对尾水管产生的影响对尾水管出现失稳状态做进一步的研究。由图15 等值压力面的速度变化可以得到:在流量工况为0.6 5 QBeP时,从尾水管上游出口、尾水管中段到尾水管下游,速度从9.8 m/s降到8.5 m/s又增大到9.15 m/s,原因是在小流量工况下,流体从尾水管出口到转轮进口的交界面上受转轮对尾水管影响较大。然而由直锥段到弯肘段后的速度变小是因为弯肘段不受到转轮影响,因此旋向也不会发生较大的改变。在流量工况为0.75QBep时,速度由5.2 5 m/s减
31、小到10.45 m/s是由于尾水管直锥段下游到上游流量减小后影响水流正常流动造成的,转轮以及尾水管回流作用改变流体原有流动方式,具有对称性的中心涡带遭到破坏,涡带贴合0.68QBEPUm图15 不同工况尾水管中间流面涡核分布图Fig.15 Distribution of vortex nuclei in the middle flowsurface of tailpipe under different working conditions4.6尾水管沿方向动能变化为了探究尾水管区域能量损失和失稳的原因,分析在不同工况下的尾水管涡带在xy面上的湍动能变化趋势。同时,为了研究涡带流动方向对尾水管
32、壁面的影响,在转轮中心位置的下方17 0 mm处建立一个xy平面。然后做出xy平面与尾水管壁面的几何面交线,截取出相交线在x方向上的动能数值并且绘制出瑞动能性能曲线图,来分析涡带对尾水管壁面产生的影响。如图16 所示,从性能曲线图上可以看出,尾水管的涡带与湍动能曲线存在密切关联。涡带速度较大的地方集中在尾水管壁面处,尤其是集中在与转轮旋转63液压气动与密封/2 0 2 4年第3 期方向一致的位置。主要是因为尾水管受到上流旋涡流动的影响以及来流对结构体的冲击所致,同时与涡带的旋转方向也有关系。由于转轮的速度发生改变尾水管产生的涡带向尾水管壁面冲击导致速度变大,还会产生偏离中心的螺旋涡带,这种偏心
33、涡带可能会导致尾水管直锥段出现剧烈的压力脉动。说明在此时涡带均匀分布在壁面处。当0.6 5 QBEp工况下可以看出曲线的最大值出现在0.15 m附近和-0.15 m附近,且动能数值达到1.3 5 J/kg左右说明尾水管涡带是由右侧壁面区域一直旋转到左侧壁面区域的,并且对壁面产生了较大的冲击。然而在0.7 5 QBEp工况下可以看出在0m附近出现最大值,且在中间位置数值达到1.482J/kg说明了涡带已经逐渐从壁面位置移动到了尾水管中心位置并对尾水管中间部位造成较大的冲击。当在0.8 0 QBEp工况下涡带已经开始偏离中心位置,向左侧靠近可以看出曲线的左侧出现了最大值。综上所述,可以看出截面上的
34、湍动能变化是随着涡带流动发生改变的,说明涡带是造成壁面受力不均匀的主要原因。而时均流通过雷诺应力做功给端流提供了能量,由于涡带旋转对壁面影响产生较大的湍动能数值,从而会吸收时均流里的大量能量导致尾水管直锥段壁面区域有较大的能量耗散。1.41.31.21.11.00.90.80.70.200.150.100.050.000.050.100.150.20X/m1.674Fig.16 Tailpipe turbulent kinetic energy change644.7尾水管压力分布在不同时刻下,由图17 发现压力变化是随着尾水管流场流动改变的,低压区域主要发生在尾水管靠近直锥段以及弯肘段内测区
35、且逐渐向肘段内侧延伸。低压区域逐渐贴合壁面位置出现类似半椭圆形状的低压区域,同时存在增加的趋势。而高压区出现在少数位置,并且每个周期都会出现低压区域,解释了尾水管在直锥段以及弯肘段出现主频干扰源波动的原因。同时受尾水管弯肘段回流以及转轮区域流动的影响,尾水管的直锥段与弯肘段会出现压力周期性变化,两者存在密切的关联。转轮区域受空化影响,流体流入尾水管的流量也随之改变,尾水管弯肘段的回流量也会变化,来流的流量变化后对尾水管的壁面造成一定影响,使尾水管周围出现压缩和扩张的情况。这种情况也会使尾水管出现周期性振动,而波动的变化与C,值的变化是保持一致的。说明主频位置干扰源主要是尾水管回流造成的,出现震
36、荡性波动。另外,转轮的迟滞效应对于尾水管弯肘段区域各点的幅值波动不大。但在直锥段幅值波动有所增加,且主频的波动会在中下游不断传播。0.75QBEp-1/12T1.4121.0/0.80.60.200.150.100.050.00-0.05-0.10-0.15-0.20X/m1.61.51.41.321.21.00.90.80.70.200.150.100.050.000.05-0.100.15-0.20X/m图16 尾水管沿方向瑞动能变化曲线curve along the x-direction0.75QBEp-1/4T0.80QBEp-1/12T0.80QBEp-1/4T0.68QBEp-1
37、/12T0.68QBEp-1/12T图17 不同工况下尾水管在不同时刻压力云图Fig.17 Pressure clouds of tailpipe at different momentsunder different working conditions4.8压力脉动分析为了便于更好分析收集到的压力脉动数据信息,布置大量监测点如图18 所示,筛选得到有用的压力数0.75QBEp-1/2T0.80QBEp1/2T0.68QBEp-1/12TKS03(Mul)Hydraulics Pneumatics&Seals/No.3.2024据。遂引人参数C,用来表示静压波动的程度。公0.30式为:0.2
38、50.20P-PAH/H=P式中,H/H振幅相对值,%P:一压力检测值,PaKS011.32120191.182.17-16-15KS021467ES01138-DS018910ii2图18 尾水管在不同截面压力监测点Fig.18 Draft pipe at different cross section pressuremonitoring points由图19 可知,第一主频率都发生在7.2 13 fn处,但幅值相比较尾水管弯肘段已提高0.3 以上,直锥段单相计算结果与收缩段和弯肘段相比出现波动并且有高峰谷区,这也说明尾水管在直锥段流动出现了不稳定性情况。在尾水管直锥段不同位置监测点存在较
39、大差异,可以看出靠近转轮区域的点和在尾水管直锥段的点压力脉动幅值较大,多相计算下尾水管的幅值已经接近0.4,大概是尾水管弯肘段的一倍多。同时在靠近转轮的位置流动情况更加复杂,除了出现主频部分外还存在多个中低频部分。如0.146,2.6 5 3,7.0 3 8,11.012,16.132fn,这些频率值在直锥段中侧以及收缩段都未出现过。原因主要是尾水管直锥段因迟滞效应受到上流涡旋流动和转轮动静干涉的影响造成的。并且对比直锥段中侧位置发现,单相计算下幅值明显变高,有的数值甚至超过多相计算的压力脉动幅值。在单相计算中低频幅值也比多相计算下的幅值高,例如在3.42 1fn之后单相的波动幅值远超过多相幅
40、值且出现多个不同的峰值区。在上游测点位置特别是在5.236fn之后两相对比值的差异能达到15%左右,这也说明了液流在直锥段已经开始紊乱,打破了等距监测点在同一截面下的周期对称性。为了进一步研究尾水管的主频频率对流场的压力波动情况,分别对监测点进行时域信号分析,以监测点的时域图为例。从图2 0 可以看出尾水管各监测点都存在明显的周期波动情况。在不同位置的的监测点之间或多或少存在一些差异,在直锥段时域图中能够清-KS03(Sin)0.150.100.050.0002468101214J/fn0.30KS03(Mul)0.25-KS03(Sin)0.200.150.100.050.000246810
41、 1214f/fm3.5KS016Mul3.0-KS016Sin2.52.01.51.00.50.000.400.350.300.250.200图19 尾水管直锥段各点压力脉动图Fig.19 Pressure pulsation at each point of the straightcone section of the tailpipe楚的看出每个峰谷值伴随4个小的峰值,且在n=12时压力系数值已经达到0.2 3 9 左右,压力系数变化的波值较大,从n=10.132开始出现峰谷,随着频率的增加压力梯度变化保持平稳且伴有周期性,相对比下,在尾水管直锥段偏远位置的时域图与靠近转轮区域不同。虽
42、然也伴有周期性,但是整体的峰谷值存在明显的下降由4到5 个峰值逐渐减小到1到2 个峰值。压力系数由0.2 3 9 降到0.147,说明靠近转轮区域,转轮65V24f/fn-KS018Mul-KS018Sin24f/fn66881010液压气动与密封/2 0 2 4年第3 期旋转形成绕流对尾水管直锥段造成影响,幅值波动频繁。此外,转轮区域和尾水管区域相互干扰,液流从上游位置经过下游位置,干扰的次数叠加,产生压力波动。在远离转轮进口位置,n=10.226开始出现波动,压力系数值为0.0 3 6,数值小说明产生的压力小,随后没有伴随波峰幅值波动。在n=10.226到n=10.465之间压力逐渐降低,
43、在n=10.465到n=11.361之间压力逐渐增大,各点趋势保持一致。因为在尾水管直锥段产生涡核,涡核的分布会影响壁面和其它位置的正常流动,同时受空化引起的尾水管回流效应,这样会影响流体在尾水管流域运行的不稳定性。-0.23-0.46KSO1KS03KSOSKS07KSIIKS09KS13KS15KS170510155202530n-.-KS010.20.0C-0.2-0.410图2 0 尾水管直锥段各点压力脉动图Fig.20Pressure pulsation diagram at each point ofthe straight cone section of the tailpipe
44、5结论(1)不同工况下,流量大小会改变尾水管区域液流的流动方向,从而产生偏心涡带,偏心涡带的产生也与转轮绕流流动存在密切关联。因为涡带的运动是受转轮惯性力附加动力引起的,导致中心涡带转变为偏心引用本文:李琪飞,谢耕达,李占勇,等.空化对尾水管区域驼峰特性影响研究 J.液压气动与密封,2 0 2 4,44(3):5 8-6 6.LI Qifei,XIE Gengda,LI Zhanyong,et al.Effect of Cavitation on the Hump Characteristics of the Tailpipe Region J.HydraulicsPneumatics&Sea
45、ls,2024,44(3):58-66.66涡带,使尾水管区域出现不稳定性,造成机组振动和噪声。(2)根据尾水管不同区域的压力波动情况,发现尾水管直锥段在单双相模型下都存在幅值波动。弯肘段和收缩段在单相计算的情况下波动幅值保持在零值附近,原因是液流在此区域流动相对稳定,没有存在涡流及其他扰动。但在多相计算下开始产生幅值波动,并且弯肘段和收缩段的波动现象一致。(3)偏离最优工况点下,尾水管单双相模型下的流动方式存在差异。单相计算结果比多相计算结果更早受到剪切流的影响。来流与壁面射流相互作用产生漩涡,出现回流现象。相反在速度梯度变化方面,0.23多相计算结果的速度值要比单相的值高,能量损失有0.0
46、0所增加。1 李玲龙.抽水蓄能电站的设计回顾与展望 J.水力发电,2010,36(7):1-2.2王楠.我国抽水蓄能电站发展现状与前景分析 J.电力技术经济,2 0 0 8(2):18 -2 0.3陶然,肖若富,杨魏.可逆式水泵水轮机泵工况的驼峰特性 J.排灌机械工程学报,2 0 14,3 2(11):9 2 7-9 3 0,9 3 6.-KS0114LI D Y,GONG R Z,WANG H J,et al.Numerical Inves-tigation in the Vaned Distributor under Different Guide VanesOpenings of a P
47、ump Turbine in Pump Mode J.Journal ofApplied Fluid Mechanics,2016,9(1):253-266.5 刘厚林,刘东喜,王勇,等.三种空化模型在离心泵空化流计算中的应用评价 J.农业工程学报,2 0 12,2 8(16):5 4-5 9.6 DAN C,Jean-Louis K.Experimental Analysis of the Rotor-1520n参考文献2530Stator Interaction in a Pump-Turbine C/The Proceeding of23th IAHR Symposium.Nanjing:2006.7姚洋阳.水泵水轮机泵工况驼峰特性流动机理数值研究D.北京:清华大学,2 0 15.8李琪飞,王源凯,刘超,等.混流式水泵水轮机驼峰区压力脉动特性 J.排灌机械工程学报,2 0 18,3 6(6):48 8-49 3.9管子武,刘德民.水泵水轮机驼峰区无叶区压力脉动特性CFD研究 J.水电站机电技术,2 0 17,40(5):15-2 0.10覃永粼,李德友,王洪杰,等.转轮出口半径分布对水泵水轮机驼峰特性影响研究C/中国水力发电工程学会电网调峰与抽水蓄能专业委员会2 0 2 0 年学术交流年会.广州:2 0 2 0.