收藏 分销(赏)

MOF衍生碳基材料的电催化应用及其先进表征技术.pdf

上传人:自信****多点 文档编号:2885073 上传时间:2024-06-08 格式:PDF 页数:22 大小:37.15MB
下载 相关 举报
MOF衍生碳基材料的电催化应用及其先进表征技术.pdf_第1页
第1页 / 共22页
MOF衍生碳基材料的电催化应用及其先进表征技术.pdf_第2页
第2页 / 共22页
MOF衍生碳基材料的电催化应用及其先进表征技术.pdf_第3页
第3页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Cite this:NewCarbonMaterials,2024,39(1):78-99DOI:10.1016/S1872-5805(24)60828-0MOF-derived nanocarbon materials for electrochemical catalysis andtheir advanced characterizationCHENXi1,LIMing-xuan1,YanJin-lun1,ZhangLong-li1,2,*(1.College of Chemistry and Chemical Engineering,China University of Petrol

2、eum(East China),Qingdao 266580,China;2.State Key Laboratory of Heavy Oil Processing,China University of Petroleum(East China),Qingdao 266580,China)Abstract:Becauseofthedemandforcleanandsustainableenergysources,nanocarbons,modifiedcarbonsandtheircompositematerialsderivedfrommetal-organicframeworks(MO

3、Fs)areemergingasdistinctcatalystsforelectrocatalyticenergyconversion.ThesematerialsnotonlyinherittheadvantagesofMOFs,likecustomizabledopantsandstructuraldiversity,butalsoeffectivelypre-venttheaggregationofnanoparticlesofmetalsandmetaloxidesduringpyrolysis.Consequently,theyincreasetheelectrocatalytic

4、ef-ficiency,improveelectricalconductivity,andmayplayapivotalroleingreenenergytechnologiessuchasfuelcellsandmetal-airbatteries.ThisreviewfirstexploresthecarbonizationmechanismoftheMOF-derivedcarbon-basedmaterials,andthenconsiders3keyaspects:intrinsiccarbondefects,metalandnon-metalatomdoping,andthesyn

5、thesisstrategiesforthesematerials.Wealsoprovideacomprehensiveintroductiontoadvancedcharacterizationtechniquestobetterunderstandthebasicelectrochemicalcatalys-isprocesses,includingmappingtechniquesfordetectinglocalizedactivesitesonelectrocatalystsurfacesatthemicro-tonano-scaleandin-situspectroscopy.F

6、inally,weofferinsightsintofutureresearchconcerningtheiruseaselectrocatalysts.Ourprimaryobject-iveistoprovideaclearerperspectiveonthecurrentstatusofMOF-derivedcarbon-basedelectrocatalystsandencouragethedevelop-mentofmoreefficientmaterials.Key words:MOFs;Nanocarbonmaterials;Electrochemicalcatalysis;Ad

7、vancedcharacterizations1IntroductionMetal-organicframeworks(MOFs)are crystal-linematerialscomposedofself-assembledmetalionsor clusters with organic ligands12.In recent years,MOFshavefoundwidespreadapplicationsinvariousfieldssuchasgasadsorptionandseparation,catalysis,chemicalsensing,energystorageandc

8、onversionduetotheirperiodiccrystalstructure,structuralflexibility,tunableporetopology,highsurfacearea,andtailor-able properties39.Notably,Zheng et al.have dis-coveredthatthein-depthexploration,precisedesign,andefficientsynthesisofMOFscannowbeachievedthroughthecollaborationofGPT-4chemistsandhu-manres

9、earchers,enhancing the feasibility and effi-ciencyofresearchactivities,thusacceleratingthepro-gressinMOFmaterials10.Furthermore,BASF,asagroundbreakingdevelopment,hasannounceditsposi-tionasthefirstglobalproducerofMOFsonascaleofseveralhundredtonsperyear.TheseMOFs,particu-larlyzinc-triazole-oxalate-bas

10、edMOF(CALF-20,de-velopedfromUniversityofCalgary),havebeende-signedforcarbondioxidestorageandcanalsoadsorbgreenhousegasmethane,makingindustrial-levelcar-boncapturepossible.Thissignificantachievement,aspublishedinthejournalScience,signifiesthetruein-dustrializationofMOFsandthesuccessfulenhance-mentofe

11、conomicbenefits6.However,the presence of weak coordinationbetweenmetalnodesandorganicligandsinthemajor-ity of MOFs leads to issues such as low catalyticactivityandchallengesincatalystrecoveryunderde-mandingreaction conditions.These conditions in-cludeorganic/watersolvents,acidicoralkalineenvir-onmen

12、ts,andhightemperatures,whichhavelimitedthepracticalapplicationofMOFsinthefieldofelec-trocatalysis.Onanothernote,highconductivityisan-other critical requirement for MOFs when used aselectrocatalysts.Nonetheless,duetothepresenceoftypicalorganiclinkerssurroundingredox-activesites,MOFsoftenexhibitpoorco

13、nductivity,renderingtheminsulatingmaterials.Additionally,theelectronicinter-actionsbetweenmetalnodesandorganiclinkersfur-theraffecttheconductivityofMOFs11.Carbon-basedReceived date:2023-10-15;Revised date:2023-11-23Corresponding author:ZHANGLong-li,Professor.E-mail:Author introduction:CHENXi,Lecture

14、r.E-mail:Homepage:http:/ in electrochemical reduction reac-tion,chemicalstability,cost-effectivenessandenvir-onmentalcompatibilityinresearchapplications.Fromeconomic and environmental perspectives,carbon-basednanomaterialsoffercertainadvantagesduetotheirabundantresourcesandeco-friendlynaturecom-pare

15、dtometal-basedcatalyticmaterials.Theseattrib-uteshavegarneredsignificantattentionforpotentialapplicationsacrossvariousdomainsforamultitudeofcarbon-basedmaterials.Thecarbonallotropefamilyprimarilyconstitutesofavast,periodicallyarrangedsp2lattice,forminganextensive-conjugatedsystemthatoffersenhancedth

16、ermalandelectricalconductiv-ity.Throughtheeffortsofnumerousscholars,modi-ficationstothelatticestructureofcarbon-basedma-terialshave been accomplished utilizing both cova-lentandnon-covalentmethods,alteringtheirintrinsicpropertiesandtailoringdesiredmaterialcharacterist-ics.Particularlyinoxygenreducti

17、onreaction(ORR)andoxygen evolution reaction(OER),typical elec-tron-demandingreactions,thedirectutilizationoftheinertelectronswithincarbon-basedmaterialsposessignificant challenges.Currently,the most directstrategyinvolves manipulating the electronic struc-tureofcarbon-basedmaterialcatalyststhroughth

18、ein-troductionofheteroatoms.Hence,thepreparationofnanoscale carbon-based derivatives from MOFs asprecursor materials offers an effective means toachievethesetargets.Overthepastdecade,remark-ableprogresshasbeenachievedinboththesynthesisstrategies and electrocatalytic activities of carbon-basedelectro

19、catalystsderivedfromMOFs1216.MOFsarerenownedfortheirorderedstructures,uniformcompositions,andrelativelyhighcarboncon-tent1617.Theyareconsideredappropriatesacrificialtemplates and metal precursors for the synthesis ofcarbonmaterials.Incomparisontoconventionalpor-ousmaterials,thesematerialsderivedfrom

20、MOFsof-tenexhibitarangeofuniqueadvantages.MOFscanbe transformed into carbon-based porous materialsthat exhibit greater stability than their precursorMOFs,retainingcharacteristicssuchasahighsurfacearea,structuraldiversityandabundantporosity.Thus,MOF-derivedmaterialsnotonlyoffertheadvantagesofporousca

21、rbonbutalsoenhancethestabilityoftheparentMOFs.Additionally,theyexhibitgreaterresili-enceandrecyclabilityunderdemandingreactioncon-ditions.For ORR or OER,the metal ions/clusterswithinMOFsrepresentpotentiallywell-definedmetalactive centers.However,their poor conductivityseverelyhinderstheirORRcatalyti

22、cactivity.Toad-dressthisissue,thethermaldecompositionofMOFstopreparecarbon-basedcatalystshasproventobeaneffective solution.In the context of electrochemicalwatersplitting,MOFsareamongthebestsupportsys-temsforenhancingthecathodichydrogenevolutionreaction(HER)12.MOF-derived carbon compoundsnotonlyexhi

23、bitgoodconductivityandstabilitybutalso successfully maintain porosity while inheritingthesubstantialsurfaceareaoftheMOFprecursors18.Thestructureandsizeofthesematerialscanalsobemodifiedthroughcarefullyplannedsynthesisforop-timaluseinenergyapplications.Thus,continuousim-provementinthepreparationstrate

24、giesforMOF-de-rivedmaterialsholdssignificantimplicationsfortheirapplicationinvariouscatalyticfields,contributingtothefutureofindustrialdevelopment.At present,several excellent reviews haveprovideddetaileddiscussionsregardingthemajorin-fluenceofcomposition,structure,ormorphologyonMOF-derived carbon-b

25、ased materials in the field ofelectrocatalysis12,16.However,asystematicsummaryanddiscussionofadvancedcharacterizationmethodsspecific to these materials are currently lacking.Therefore,we hope that this review will assist re-searchers in gaining a quicker understanding of thelatestdevelopments in MOF

26、-derived carbon elec-trocatalysts,designing and synthesizing higher-per-formanceelectrocatalysts,andgainingadeeperunder-standing of advanced characterization methods forMOF-derivedcarbon-basedmaterials.Inthisreview,we first discuss the carbonization mechanisms ofMOF-derived carbon-based materials.Su

27、bsequently,wefocusonpromotionstrategiesfrom3aspects(in-trinsiccarbon defects,metal and non-metal het-eroatomdoping)andsystematicallyintroducevariousadvanced characterization methods(in-situ mapping第1期CHENXietal:MOF-derivednanocarbonmaterialsforelectrochemicalcatalysisandtheir79and in-situ spectrosco

28、py).Finally,we provide ourconclusions and prospects for future research onMOF-derivedcarbon-based materials as electrocata-lysts.This review aims to provide a clearer under-standingofthecurrentstatusofMOF-derivedcarbon-basedelectrocatalysts,offering insights into the ex-plorationofmoreefficientelect

29、rocatalyticmaterials.2CarbonizationstrategiesMOFsexhibitawiderangeofcompositionsandstructuraltunability,renderingthemidealprecursorsforcraftingporouscarbonnanomaterials1719.Tocre-atethesematerials,MOFsaresubjectedtocarboniza-tion,involvingthepyrolysisofself-ligands,adsorbedorganic solvents,or guest

30、molecules2021.This pro-cess involves inter-/intramolecular dehydrogenation,deoxygenation,polymerization,arylation and func-tional group carbonization,ultimately yielding nanocarbonmaterials2223.Commonpreparationmethodsincludepyrolysisorsolutionpermeationwithincon-trolledatmosphereslikeAr,N2,H2orair2

31、4.ThroughtherationaldesignofMOFsprecursorsandmeticu-louscontrolofthesynthesisprocess(e.g.gasenviron-ment,pyrolysis temperature,duration,heating rateandprecursoraddition),adiversearrayofmaterialsderivedfromMOFscanbeprepared2526.Thesema-terials often retain certain characteristics inheritedfromtheMOFs

32、precursors,suchasporesizes,mor-phology,compositionsandproperties2728.ThisbroadspectrumofMOFs-derivednanocarbonmaterialsen-compassescarbonquantumdots20,29,porouscarbons28,30,metal nanoparticles31,metal compo-unds32,andtheirvariousnanoscalecomposites3,7,33.MOFs-derivednanocarbonmaterialsofferkeyadvant

33、-ages:(1)Diversityandtunability:Theyleveragethevaried metal ions and organic ligands found inMOFs3,34.(2)Preservation of porous and orderedstructures:Theordered,porousMOFstructureeffect-ively prevents metal nanoparticle formation duringpyrolysis and the creation of metal oxides19,26.(3)Simpleprepara

34、tion:MOFsareeasilypreparedundermild conditions,exemplified by ZIF-67,ZIF-8 andHKUST-1,whichcanbesynthesizedatroomtemper-ature and ambient pressure14,35.The utilization ofnanocarbonmaterials derived from MOFs in elec-trocatalysispresents several advantages:(1)En-hancedactivesites3536:Carefulcontrolof

35、nanocar-bonmaterialmorphologyandporosityincreasesthenumber of exposed active sites,thereby enhancingelectrocatalyticefficiency.(2)Improvedmetaldisper-sion3738:The coordination environment betweenmetal ions and ligands in MOFs ensures well-dis-persedmetalsincarbonnanomaterialsboostingutiliz-ation eff

36、iciency.(3)Heteroatom introduction3940:The incorporation of heteroatoms makes doped-car-bonmaterials more receptive to well-defined het-eroatomfunctionalgroups,customizedpolarity,andinherent redox-active sites.The synthesis strategiesoutlinedinthispaperforMOFs-derivedcarbonnanomaterialscanbecategori

37、zedinto3keyaspects.2.1 Direct pyrolysisThis is the simplest method to prepare porouscarbonmaterialsbydirectpyrolysisofMOFsprecurs-ors14,40.Theactivatedcarbonproducedbythismeth-odhasanorderedporestructurecomparedtocom-mercialactivatedcarbon.Forthepreparationofmetal-freecarbon,theMOFsprecursorsaregene

38、rallysub-jectedtohigh-temperaturecarbonizationunderanin-ertatmosphere(e.g.,Ar,N2),whichleadstothede-composition of the organic skeleton,and the metalspeciescansubsequentlyberemovedbyin-situevap-orationoracidetching,andtheremovalofthemetalspecies increases the specific surface area and porevolumeofth

39、ematerial7,14.Forexample,Zhangetal14.synthesizednitrogen-dopedgraphiticporouscarbons(NGPCs)byusingazeolite-typenano-metallicorgan-ic skeleton(ZIF-8)as a self-sacrificing template,which was directly subjected to a high-temperaturecarbonizationprocessunderaninertN2atmosphere,followedbyfurtherremovalof

40、metalliczincparticlesbyacid etching,and consequently the ligand im-idazoleusedintheMOFactedasbothacarbonsourceand nitrogen source in the carbonization process(Fig.1a,b).Asshownbythetransmissionelectronmicroscope(TEM)images,the NGPCs retained thenanopolyhedral morphology of the parent ZIF-880新型炭材料(中英

41、文)第39卷(Fig.1c-e),andhadabundantnitrogen,highspecificsurfaceareaandhierarchicalporositywithgoodelec-tricalconductivitynetwork,whichhasgreatpotentialas metal-free electrocatalysts for the ORR in fuelcells.Lietal30.usedZIF-67asaprecursortocontrolthe formation of high graphitized carbon shell-en-closedm

42、esoporousmaterial(CN)frominsitu-gener-atedConanoparticlesthroughacidetchingbyadjust-ingthecalcinationtemperature,whichexhibitedex-cellentcatalyticperformanceintheaerobicoxidationofcyclohexaneandtolueneaswellasintheoxidativecouplingreactionofamineandimine.2.2 Co-pyrolysisDuetothelowcarboncontentinsom

43、eMOFsortheanisotropic contraction during pyrolysis,the de-rivedcarbonporesmayswellorshowthephenomen-on of cavity collapse,and the direct pyrolysis ofMOFsformsalimitednumberofactivecentersforcatalysts7.In order to maintain the stability of theporestructure,theco-pyrolysisofMOFsastemplat-ingagentswith

44、differentcarbonsourcescanbeusedtopreparecarbonmaterialswithhighspecificsurfacearea,homogeneousparticlesizesandgoodmorpho-logy.TheincorporationofguestspeciesintoMOFsfollowed by pyrolysis as an effective strategy is ofgreatinterestthepreparationofMOF-derivedporousmaterials11,28.The most commonly used

45、externallyaddedcarbonsourceinthecarbonizationprocessofMOFsisfurfurylalcohol(FA),andthepolymeriza-tionofFAinMOFswiththelossofweightinthepyrolysisprocesscanleadtothederivationofporousstructures(Fig.1f).Liuetal17.subjectedFA/MOF-5compositestolow-temperature(98%after500cyclesat1C,withacommercial-gradere

46、versiblecapacity of 2.3 mAh cm2.An SEM image of thecross-section of the HAGO/CoCN material isshowninFig.2d,whichshowsahierarchicalstruc-tureofhorizontallyalignedGO/CoCNnanosheetswithgapsbetweenneighboringGO/CoCNlayersofabout 20 m.The selected area electron diffraction(SAED)(Fig.2e)coincidewellwithth

47、elatticeplanesofCo(111),(200),(220)andgraphiticcarbon(002).Itcan be expected that the HAGO/CoCN elec-trodeswillexposeadditionalactivesitesandthusim-prove the electrochemical performance.In addition,differentstructuresandpropertiesofcarbonnanoma-terial derivatives can be obtained by regulating thepyr

48、olysistemperatureandatmosphere.Zhangetal34.foundthat similar ZIF-67/GO composites can pro-duce the three-dimensional porous hybrid materialCoN-HCCsNG by using the low-temperature(a)(f)(g)(i)(j)(d)(e)Co(220)Co(111)Co(200)C(002)(h)(b)(c)GO/CoCN electrodeHAGO/CoCN electrodeGO/CoCNGO/CoCNelectrodeevapor

49、ation80 CGOCCNHollow carbonnanocapsuleCo nanoparticleCoN-HCCsNGCarbonizationAcid etchingZIF-67ZIF-67/GOGO/ZIF-67Commercial GOLimited iontransportUnstablestructureZIF-67ZIF-67CoCNRandomly aligned sheetsHorizontally aligned sheetsRapid iontransportStrongstructureLi+Deposition600 CAnnealing100 m2 1/nm5

50、0 nm100 nm5 nm5 1/nm(200)(002)(111)Channel0.34 nmC(002)Fig.2(a)SyntheticprocessoftheGO/ZIF-67compositesandGO/CoCNnanosheets.(b)RandomlyalignedGO/CoCNnanosheetswithelectrode.(c)HorizontallyalignedGO/CoCNnanosheetswithelectrode.(d)Thecross-sectionalSEMimageand(e)SAEDpatternoftheHAGO/CoCNelectrodes19.R

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服