ImageVerifierCode 换一换
格式:PDF , 页数:22 ,大小:37.15MB ,
资源ID:2885073      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2885073.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(MOF衍生碳基材料的电催化应用及其先进表征技术.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

MOF衍生碳基材料的电催化应用及其先进表征技术.pdf

1、Cite this:NewCarbonMaterials,2024,39(1):78-99DOI:10.1016/S1872-5805(24)60828-0MOF-derived nanocarbon materials for electrochemical catalysis andtheir advanced characterizationCHENXi1,LIMing-xuan1,YanJin-lun1,ZhangLong-li1,2,*(1.College of Chemistry and Chemical Engineering,China University of Petrol

2、eum(East China),Qingdao 266580,China;2.State Key Laboratory of Heavy Oil Processing,China University of Petroleum(East China),Qingdao 266580,China)Abstract:Becauseofthedemandforcleanandsustainableenergysources,nanocarbons,modifiedcarbonsandtheircompositematerialsderivedfrommetal-organicframeworks(MO

3、Fs)areemergingasdistinctcatalystsforelectrocatalyticenergyconversion.ThesematerialsnotonlyinherittheadvantagesofMOFs,likecustomizabledopantsandstructuraldiversity,butalsoeffectivelypre-venttheaggregationofnanoparticlesofmetalsandmetaloxidesduringpyrolysis.Consequently,theyincreasetheelectrocatalytic

4、ef-ficiency,improveelectricalconductivity,andmayplayapivotalroleingreenenergytechnologiessuchasfuelcellsandmetal-airbatteries.ThisreviewfirstexploresthecarbonizationmechanismoftheMOF-derivedcarbon-basedmaterials,andthenconsiders3keyaspects:intrinsiccarbondefects,metalandnon-metalatomdoping,andthesyn

5、thesisstrategiesforthesematerials.Wealsoprovideacomprehensiveintroductiontoadvancedcharacterizationtechniquestobetterunderstandthebasicelectrochemicalcatalys-isprocesses,includingmappingtechniquesfordetectinglocalizedactivesitesonelectrocatalystsurfacesatthemicro-tonano-scaleandin-situspectroscopy.F

6、inally,weofferinsightsintofutureresearchconcerningtheiruseaselectrocatalysts.Ourprimaryobject-iveistoprovideaclearerperspectiveonthecurrentstatusofMOF-derivedcarbon-basedelectrocatalystsandencouragethedevelop-mentofmoreefficientmaterials.Key words:MOFs;Nanocarbonmaterials;Electrochemicalcatalysis;Ad

7、vancedcharacterizations1IntroductionMetal-organicframeworks(MOFs)are crystal-linematerialscomposedofself-assembledmetalionsor clusters with organic ligands12.In recent years,MOFshavefoundwidespreadapplicationsinvariousfieldssuchasgasadsorptionandseparation,catalysis,chemicalsensing,energystorageandc

8、onversionduetotheirperiodiccrystalstructure,structuralflexibility,tunableporetopology,highsurfacearea,andtailor-able properties39.Notably,Zheng et al.have dis-coveredthatthein-depthexploration,precisedesign,andefficientsynthesisofMOFscannowbeachievedthroughthecollaborationofGPT-4chemistsandhu-manres

9、earchers,enhancing the feasibility and effi-ciencyofresearchactivities,thusacceleratingthepro-gressinMOFmaterials10.Furthermore,BASF,asagroundbreakingdevelopment,hasannounceditsposi-tionasthefirstglobalproducerofMOFsonascaleofseveralhundredtonsperyear.TheseMOFs,particu-larlyzinc-triazole-oxalate-bas

10、edMOF(CALF-20,de-velopedfromUniversityofCalgary),havebeende-signedforcarbondioxidestorageandcanalsoadsorbgreenhousegasmethane,makingindustrial-levelcar-boncapturepossible.Thissignificantachievement,aspublishedinthejournalScience,signifiesthetruein-dustrializationofMOFsandthesuccessfulenhance-mentofe

11、conomicbenefits6.However,the presence of weak coordinationbetweenmetalnodesandorganicligandsinthemajor-ity of MOFs leads to issues such as low catalyticactivityandchallengesincatalystrecoveryunderde-mandingreaction conditions.These conditions in-cludeorganic/watersolvents,acidicoralkalineenvir-onmen

12、ts,andhightemperatures,whichhavelimitedthepracticalapplicationofMOFsinthefieldofelec-trocatalysis.Onanothernote,highconductivityisan-other critical requirement for MOFs when used aselectrocatalysts.Nonetheless,duetothepresenceoftypicalorganiclinkerssurroundingredox-activesites,MOFsoftenexhibitpoorco

13、nductivity,renderingtheminsulatingmaterials.Additionally,theelectronicinter-actionsbetweenmetalnodesandorganiclinkersfur-theraffecttheconductivityofMOFs11.Carbon-basedReceived date:2023-10-15;Revised date:2023-11-23Corresponding author:ZHANGLong-li,Professor.E-mail:Author introduction:CHENXi,Lecture

14、r.E-mail:Homepage:http:/ in electrochemical reduction reac-tion,chemicalstability,cost-effectivenessandenvir-onmentalcompatibilityinresearchapplications.Fromeconomic and environmental perspectives,carbon-basednanomaterialsoffercertainadvantagesduetotheirabundantresourcesandeco-friendlynaturecom-pare

15、dtometal-basedcatalyticmaterials.Theseattrib-uteshavegarneredsignificantattentionforpotentialapplicationsacrossvariousdomainsforamultitudeofcarbon-basedmaterials.Thecarbonallotropefamilyprimarilyconstitutesofavast,periodicallyarrangedsp2lattice,forminganextensive-conjugatedsystemthatoffersenhancedth

16、ermalandelectricalconductiv-ity.Throughtheeffortsofnumerousscholars,modi-ficationstothelatticestructureofcarbon-basedma-terialshave been accomplished utilizing both cova-lentandnon-covalentmethods,alteringtheirintrinsicpropertiesandtailoringdesiredmaterialcharacterist-ics.Particularlyinoxygenreducti

17、onreaction(ORR)andoxygen evolution reaction(OER),typical elec-tron-demandingreactions,thedirectutilizationoftheinertelectronswithincarbon-basedmaterialsposessignificant challenges.Currently,the most directstrategyinvolves manipulating the electronic struc-tureofcarbon-basedmaterialcatalyststhroughth

18、ein-troductionofheteroatoms.Hence,thepreparationofnanoscale carbon-based derivatives from MOFs asprecursor materials offers an effective means toachievethesetargets.Overthepastdecade,remark-ableprogresshasbeenachievedinboththesynthesisstrategies and electrocatalytic activities of carbon-basedelectro

19、catalystsderivedfromMOFs1216.MOFsarerenownedfortheirorderedstructures,uniformcompositions,andrelativelyhighcarboncon-tent1617.Theyareconsideredappropriatesacrificialtemplates and metal precursors for the synthesis ofcarbonmaterials.Incomparisontoconventionalpor-ousmaterials,thesematerialsderivedfrom

20、MOFsof-tenexhibitarangeofuniqueadvantages.MOFscanbe transformed into carbon-based porous materialsthat exhibit greater stability than their precursorMOFs,retainingcharacteristicssuchasahighsurfacearea,structuraldiversityandabundantporosity.Thus,MOF-derivedmaterialsnotonlyoffertheadvantagesofporousca

21、rbonbutalsoenhancethestabilityoftheparentMOFs.Additionally,theyexhibitgreaterresili-enceandrecyclabilityunderdemandingreactioncon-ditions.For ORR or OER,the metal ions/clusterswithinMOFsrepresentpotentiallywell-definedmetalactive centers.However,their poor conductivityseverelyhinderstheirORRcatalyti

22、cactivity.Toad-dressthisissue,thethermaldecompositionofMOFstopreparecarbon-basedcatalystshasproventobeaneffective solution.In the context of electrochemicalwatersplitting,MOFsareamongthebestsupportsys-temsforenhancingthecathodichydrogenevolutionreaction(HER)12.MOF-derived carbon compoundsnotonlyexhi

23、bitgoodconductivityandstabilitybutalso successfully maintain porosity while inheritingthesubstantialsurfaceareaoftheMOFprecursors18.Thestructureandsizeofthesematerialscanalsobemodifiedthroughcarefullyplannedsynthesisforop-timaluseinenergyapplications.Thus,continuousim-provementinthepreparationstrate

24、giesforMOF-de-rivedmaterialsholdssignificantimplicationsfortheirapplicationinvariouscatalyticfields,contributingtothefutureofindustrialdevelopment.At present,several excellent reviews haveprovideddetaileddiscussionsregardingthemajorin-fluenceofcomposition,structure,ormorphologyonMOF-derived carbon-b

25、ased materials in the field ofelectrocatalysis12,16.However,asystematicsummaryanddiscussionofadvancedcharacterizationmethodsspecific to these materials are currently lacking.Therefore,we hope that this review will assist re-searchers in gaining a quicker understanding of thelatestdevelopments in MOF

26、-derived carbon elec-trocatalysts,designing and synthesizing higher-per-formanceelectrocatalysts,andgainingadeeperunder-standing of advanced characterization methods forMOF-derivedcarbon-basedmaterials.Inthisreview,we first discuss the carbonization mechanisms ofMOF-derived carbon-based materials.Su

27、bsequently,wefocusonpromotionstrategiesfrom3aspects(in-trinsiccarbon defects,metal and non-metal het-eroatomdoping)andsystematicallyintroducevariousadvanced characterization methods(in-situ mapping第1期CHENXietal:MOF-derivednanocarbonmaterialsforelectrochemicalcatalysisandtheir79and in-situ spectrosco

28、py).Finally,we provide ourconclusions and prospects for future research onMOF-derivedcarbon-based materials as electrocata-lysts.This review aims to provide a clearer under-standingofthecurrentstatusofMOF-derivedcarbon-basedelectrocatalysts,offering insights into the ex-plorationofmoreefficientelect

29、rocatalyticmaterials.2CarbonizationstrategiesMOFsexhibitawiderangeofcompositionsandstructuraltunability,renderingthemidealprecursorsforcraftingporouscarbonnanomaterials1719.Tocre-atethesematerials,MOFsaresubjectedtocarboniza-tion,involvingthepyrolysisofself-ligands,adsorbedorganic solvents,or guest

30、molecules2021.This pro-cess involves inter-/intramolecular dehydrogenation,deoxygenation,polymerization,arylation and func-tional group carbonization,ultimately yielding nanocarbonmaterials2223.Commonpreparationmethodsincludepyrolysisorsolutionpermeationwithincon-trolledatmosphereslikeAr,N2,H2orair2

31、4.ThroughtherationaldesignofMOFsprecursorsandmeticu-louscontrolofthesynthesisprocess(e.g.gasenviron-ment,pyrolysis temperature,duration,heating rateandprecursoraddition),adiversearrayofmaterialsderivedfromMOFscanbeprepared2526.Thesema-terials often retain certain characteristics inheritedfromtheMOFs

32、precursors,suchasporesizes,mor-phology,compositionsandproperties2728.ThisbroadspectrumofMOFs-derivednanocarbonmaterialsen-compassescarbonquantumdots20,29,porouscarbons28,30,metal nanoparticles31,metal compo-unds32,andtheirvariousnanoscalecomposites3,7,33.MOFs-derivednanocarbonmaterialsofferkeyadvant

33、-ages:(1)Diversityandtunability:Theyleveragethevaried metal ions and organic ligands found inMOFs3,34.(2)Preservation of porous and orderedstructures:Theordered,porousMOFstructureeffect-ively prevents metal nanoparticle formation duringpyrolysis and the creation of metal oxides19,26.(3)Simpleprepara

34、tion:MOFsareeasilypreparedundermild conditions,exemplified by ZIF-67,ZIF-8 andHKUST-1,whichcanbesynthesizedatroomtemper-ature and ambient pressure14,35.The utilization ofnanocarbonmaterials derived from MOFs in elec-trocatalysispresents several advantages:(1)En-hancedactivesites3536:Carefulcontrolof

35、nanocar-bonmaterialmorphologyandporosityincreasesthenumber of exposed active sites,thereby enhancingelectrocatalyticefficiency.(2)Improvedmetaldisper-sion3738:The coordination environment betweenmetal ions and ligands in MOFs ensures well-dis-persedmetalsincarbonnanomaterialsboostingutiliz-ation eff

36、iciency.(3)Heteroatom introduction3940:The incorporation of heteroatoms makes doped-car-bonmaterials more receptive to well-defined het-eroatomfunctionalgroups,customizedpolarity,andinherent redox-active sites.The synthesis strategiesoutlinedinthispaperforMOFs-derivedcarbonnanomaterialscanbecategori

37、zedinto3keyaspects.2.1 Direct pyrolysisThis is the simplest method to prepare porouscarbonmaterialsbydirectpyrolysisofMOFsprecurs-ors14,40.Theactivatedcarbonproducedbythismeth-odhasanorderedporestructurecomparedtocom-mercialactivatedcarbon.Forthepreparationofmetal-freecarbon,theMOFsprecursorsaregene

38、rallysub-jectedtohigh-temperaturecarbonizationunderanin-ertatmosphere(e.g.,Ar,N2),whichleadstothede-composition of the organic skeleton,and the metalspeciescansubsequentlyberemovedbyin-situevap-orationoracidetching,andtheremovalofthemetalspecies increases the specific surface area and porevolumeofth

39、ematerial7,14.Forexample,Zhangetal14.synthesizednitrogen-dopedgraphiticporouscarbons(NGPCs)byusingazeolite-typenano-metallicorgan-ic skeleton(ZIF-8)as a self-sacrificing template,which was directly subjected to a high-temperaturecarbonizationprocessunderaninertN2atmosphere,followedbyfurtherremovalof

40、metalliczincparticlesbyacid etching,and consequently the ligand im-idazoleusedintheMOFactedasbothacarbonsourceand nitrogen source in the carbonization process(Fig.1a,b).Asshownbythetransmissionelectronmicroscope(TEM)images,the NGPCs retained thenanopolyhedral morphology of the parent ZIF-880新型炭材料(中英

41、文)第39卷(Fig.1c-e),andhadabundantnitrogen,highspecificsurfaceareaandhierarchicalporositywithgoodelec-tricalconductivitynetwork,whichhasgreatpotentialas metal-free electrocatalysts for the ORR in fuelcells.Lietal30.usedZIF-67asaprecursortocontrolthe formation of high graphitized carbon shell-en-closedm

42、esoporousmaterial(CN)frominsitu-gener-atedConanoparticlesthroughacidetchingbyadjust-ingthecalcinationtemperature,whichexhibitedex-cellentcatalyticperformanceintheaerobicoxidationofcyclohexaneandtolueneaswellasintheoxidativecouplingreactionofamineandimine.2.2 Co-pyrolysisDuetothelowcarboncontentinsom

43、eMOFsortheanisotropic contraction during pyrolysis,the de-rivedcarbonporesmayswellorshowthephenomen-on of cavity collapse,and the direct pyrolysis ofMOFsformsalimitednumberofactivecentersforcatalysts7.In order to maintain the stability of theporestructure,theco-pyrolysisofMOFsastemplat-ingagentswith

44、differentcarbonsourcescanbeusedtopreparecarbonmaterialswithhighspecificsurfacearea,homogeneousparticlesizesandgoodmorpho-logy.TheincorporationofguestspeciesintoMOFsfollowed by pyrolysis as an effective strategy is ofgreatinterestthepreparationofMOF-derivedporousmaterials11,28.The most commonly used

45、externallyaddedcarbonsourceinthecarbonizationprocessofMOFsisfurfurylalcohol(FA),andthepolymeriza-tionofFAinMOFswiththelossofweightinthepyrolysisprocesscanleadtothederivationofporousstructures(Fig.1f).Liuetal17.subjectedFA/MOF-5compositestolow-temperature(98%after500cyclesat1C,withacommercial-gradere

46、versiblecapacity of 2.3 mAh cm2.An SEM image of thecross-section of the HAGO/CoCN material isshowninFig.2d,whichshowsahierarchicalstruc-tureofhorizontallyalignedGO/CoCNnanosheetswithgapsbetweenneighboringGO/CoCNlayersofabout 20 m.The selected area electron diffraction(SAED)(Fig.2e)coincidewellwithth

47、elatticeplanesofCo(111),(200),(220)andgraphiticcarbon(002).Itcan be expected that the HAGO/CoCN elec-trodeswillexposeadditionalactivesitesandthusim-prove the electrochemical performance.In addition,differentstructuresandpropertiesofcarbonnanoma-terial derivatives can be obtained by regulating thepyr

48、olysistemperatureandatmosphere.Zhangetal34.foundthat similar ZIF-67/GO composites can pro-duce the three-dimensional porous hybrid materialCoN-HCCsNG by using the low-temperature(a)(f)(g)(i)(j)(d)(e)Co(220)Co(111)Co(200)C(002)(h)(b)(c)GO/CoCN electrodeHAGO/CoCN electrodeGO/CoCNGO/CoCNelectrodeevapor

49、ation80 CGOCCNHollow carbonnanocapsuleCo nanoparticleCoN-HCCsNGCarbonizationAcid etchingZIF-67ZIF-67/GOGO/ZIF-67Commercial GOLimited iontransportUnstablestructureZIF-67ZIF-67CoCNRandomly aligned sheetsHorizontally aligned sheetsRapid iontransportStrongstructureLi+Deposition600 CAnnealing100 m2 1/nm5

50、0 nm100 nm5 nm5 1/nm(200)(002)(111)Channel0.34 nmC(002)Fig.2(a)SyntheticprocessoftheGO/ZIF-67compositesandGO/CoCNnanosheets.(b)RandomlyalignedGO/CoCNnanosheetswithelectrode.(c)HorizontallyalignedGO/CoCNnanosheetswithelectrode.(d)Thecross-sectionalSEMimageand(e)SAEDpatternoftheHAGO/CoCNelectrodes19.R

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服