收藏 分销(赏)

高一数学上学期第一学段考试试题.doc

上传人:丰**** 文档编号:2875433 上传时间:2024-06-07 格式:DOC 页数:6 大小:327KB
下载 相关 举报
高一数学上学期第一学段考试试题.doc_第1页
第1页 / 共6页
高一数学上学期第一学段考试试题.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
2016-2017学年高一年级第一学期第一学段考试 数学试卷 (满分100分 考试时间60分钟) 一.选择题(每题4分,共10道题) 1.已知全集,集合,则( ) A. B. C. D. 2.设集合,集合,则的子集个数是( ) A.4 B.8 C.16 D.32 3.下列各组函数中的两个函数是相等函数的是( ) A. B. C. D. 4.下列函数中,既是奇函数,又在定义域内为减函数的是(  ) A. B.y= C.y=-x3 D.y=log3(-x) 5. 如果集合中只有一个元素,则a的值是( ) A.0 B.0 或1 C.1 D.不能确定 6. 已知集合且,则实数的值为 A.3 B.2 C.0或3 D.0,2,3均可 7若,则下列等式正确的是( ) A.a+b=﹣1 B.a+b=1 C.a+2b=﹣1 D.a+2b=1 8若指数函数在R上为单调递减函数,则a的取值范围是( ) A.(0,1) B.(,+∞) C.(,+1) D.(1,+∞) 9( ) A. B. C. D. 10.设函数如果,则的取值范围是 (A) (B) (C) (D) 二.填空题(每题4分,共4道题) 11.已知a=0.80.7,b=0.80.9,c=1.20.8,则a,b,c的大小关系为________. 12.若 13.已知函数f(x)=,若f[f(0)]=4a,则实数a=________. 14.若函数f(x)=-x2-2(a+1)x+3在区间(-∞,3]上是增函数,则实数a的取值范围是. _______ 三.解答题(共44分) 15.(本小题满分10分) 已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (1)求A∪B,∁UA∩B; (2)若A∩C≠∅,求a的取值范围. 16. (本小题10分) (1)计算(1)计算 (2)已知,求值: 17.(本小题12分)已知函数是二次函数,且满足。 (1)求的解析式; (2)若X∈[-3,1],求的值域。 18.(本小题满分12分) 已知定义域为R的函数f(x)=是奇函数. (1)求b的值; (2)判断函数f(x)的单调性,并用定义加以证明。 高一数学答案 一.选择:ACBAA AACBD 二填空118 .12. ____13. _______14._ 三.解答题(共44分) 15.(本小题满分14分) 已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (1)求A∪B,∁UA∩B; (2)若A∩C≠∅,求a的取值范围. 解:(1)………… 5分 ∁UA∩B ……. 10分 (2)……………. 14分 16. (本小题满分14分) 已知函数f (x) =-2x. (Ⅰ)求f (x)的定义域; (Ⅱ)判断f (x)的奇偶性; (Ⅲ)用定义证明函数f (x) =-2x在(0,+∞)上是减函数. (Ⅰ)解:f (x)定义域D={x∈R| x≠0};…….3分 (Ⅱ)任取,都有,且f (-x)=2x-=-f (x), 所以f (x)是奇函数; …………….7分 (Ⅲ)证明: 设x1,x2是(0,+∞)上的两个任意实数,且x1 < x2, f (x2)-f (x1) =-2-(-2) = ……………. 11分 因为0<x1<x2,所以x1-x2 <0,x1x2 > 0, . 所以f (x2)- f (x1) <0. 即f (x1) > f (x2). 所以f (x) 是(0,+∞)上的减函数. . …………….14分 17.(本小题10分) 已知二次函数满足. (1)求的解析式; (2)若x∈[-3,1],求的值域. 解:设 ,因为,所以…………1分 当时,由,得……2分 当时,由,得……3分 由,得,求得 所以.………………………………………5分 (2). 在区间单调递减,在区间单调递增,6分 又因为,所以当时,的最小值是,……7分 又因为当时, ,……………..8分 当时, ,…………………..9分 所以的值域是………………………..10分 18.(本小题满分6分) 某企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: 其中x是仪器的产量. (Ⅰ)将利润表示为产量的函数; (Ⅱ)当产量为何值时,公司所获利润最大?最大利润是多少元? (注:利润=总收益-总成本). 解:(Ⅰ)由题意知,总成本是(20000+100x)元, 故利润,即利润函数为: ……………2分 (Ⅱ)当0≤x≤400时,, 当x=300时,取最大值25000; ……………3分 当x>400时,是减函数,故<=20000. ……………4分 综上所述,,此时x=300. ……………5分 即当产量为300台时,公司获得最大利润25000元. ……………6分
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服