1、(完整word版)离散数学试卷及答案(2)一、填空 20% (每小题2分)1、 P:你努力,Q:你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。2、论域D=1,2,指定谓词PP (1,1)P (1,2)P (2,1)P (2,2)TTFF则公式真值为 。2、 设S=a1 ,a2 ,a8,Bi是S的子集,则由B31所表达的子集是 。3、 设A=2,3,4,5,6上的二元关系,则R= (列举法)。R的关系矩阵MR= 。5、设A=1,2,3,则A上既不是对称的又不是反对称的关系R= ;A上既是对称的又是反对称的关系R= 。*a b cabca b cb b
2、cc c b6、设代数系统,其中A=a,b,c,则幺元是 ;是否有幂等 性 ;是否有对称性 。7、4阶群必是 群或 群。8、下面偏序格是分配格的是 。9、n个结点的无向完全图Kn的边数为 ,欧拉图的充要条件是 。10、公式 的根树表示为 。二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A;B;C; D 。2、命题公式 中极小项的个数为( ),成真赋值的个数为( )。A0; B1; C2; D3 。3、设,则 有( )个元素。A3; B6; C7; D8 。4、 设,定义上的等价关系则由 R产 生的上一个划分共有( )个分块。A4; B5; C6; D9 。5、设,S上关系R的
3、关系图为则R具有( )性质。A自反性、对称性、传递性; B反自反性、反对称性;C反自反性、反对称性、传递性; D自反性 。6、设 为普通加法和乘法,则( )是域。A BC D= N 。7、下面偏序集( )能构成格。8、在如下的有向图中,从V1到V4长度为3 的道路有( )条。A1; B2; C3; D4 。9、在如下各图中( )欧拉图。10、设R是实数集合,“”为普通乘法,则代数系统 是( )。A群; B独异点; C半群 。三、证明 46%1、 设R是A上一个二元关系,试证明若R是A上一个等价关系,则S也是A上的一个等价关系。(9分)2、 用逻辑推理证明:所有的舞蹈者都很有风度,王华是个学生且
4、是个舞蹈者。因此有些学生很有风度。(11分)3、 若是从A到B的函数,定义一个函数 对任意有,证明:若f是A到B的满射,则g是从B到 的单射。(10分)4、 若无向图G中只有两个奇数度结点,则这两个结点一定连通。(8分)5、 设G是具有n个结点的无向简单图,其边数,则G是Hamilton图(8分)四、计算 14%1、 设是一个群,这里+6是模6加法,Z6=0 ,1,2,3,4,5,试求出的所有子群及其相应左陪集。(7分)2、 权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。(7分)一、 填空 20%(每小题2分)1、; 2、T 3、 4、R=,; 5、R=,;R=
5、, 6、a ;否;有 7、Klein四元群;循环群 8、 B 9、;图中无奇度结点且连通 10 、二、 选择 20%(每小题 2分)题目12345678910答案B、DD;DDBDABBBB、C三、 证明 46%1、(9分)(1) S自反的,由R自反,(2) S对称的(3) S传递的由(1)、(2)、(3)得;S是等价关系。2、11分证明:设P(x):x 是个舞蹈者; Q(x) :x很有风度; S(x):x是个学生; a:王华上述句子符号化为:前提:、 结论: 3分PPUSTI TITITIEG11分、0分证明 :。4、8分证明:设G中两奇数度结点分别为u 和v,若 u,v不连通,则G至少有两
6、个连通分支G1、G2 ,使得u和v分别属于G1和G2,于是G1和G2中各含有1个奇数度结点,这与图论基本定理矛盾,因而u,v一定连通。5、8分证明: 证G中任何两结点之和不小于n。反证法:若存在两结点u,v 不相邻且,令,则G-V1是具有n-2个结点的简单图,它的边数,可得,这与G1=G-V1为n-2个结点为简单图的题设矛盾,因而G中任何两个相邻的结点度数和不少于n。所以G为Hamilton图.四、 计算 14%1、 7分解:子群有;0的左陪集:0,1;2,3;4,50,3的左陪集:0,3;1,4;2,50,2,4的左陪集:0,2,4;1,3,5Z6的左陪集:Z6 。2、 7分第 8 页 共 8 页