收藏 分销(赏)

矩阵理论课程论文-随机矩阵理论在频谱感知上的应用.docx

上传人:可**** 文档编号:2686552 上传时间:2024-06-04 格式:DOCX 页数:8 大小:78.99KB 下载积分:10 金币
下载 相关 举报
矩阵理论课程论文-随机矩阵理论在频谱感知上的应用.docx_第1页
第1页 / 共8页
矩阵理论课程论文-随机矩阵理论在频谱感知上的应用.docx_第2页
第2页 / 共8页


点击查看更多>>
资源描述
成 绩 评卷人 研究生姓名 学 号 吉首大学研究生课程论文 《随机矩阵理论在频谱感知上的应用》 课程类别: 专业选修课 课程名称: 矩阵理论 任课教师: 随机矩阵理论在频谱感知上的应用 摘要:频谱感知是指认知用户通过各种信号检测和处理手段来获取无线网络中的频谱使用信息,即主用户信号是否占用该频段。但主用户不占用时,认知用户可以使用该频段,反之则不能使用该频段。由此可知最重要的是检测主用户时候存在,本论文就利用随机矩阵理论来进行检测。随机矩阵理论(Random Matrix Theory,RMT)通过比较随机的多维时间序列统计特性,可以体现实际数据中对随机的偏离程度,并揭示数据中整体关联的行为特性[1]。 关键字:随机矩阵理论;频谱感知 1引言 频谱感知的目的就是通过一些手段检测主用户是否存在来判断其所占有的频段是否空闲可用,如果可用,则认知用户可以利用此频段进行通信,这样一来可以充分的利用频谱资源[2],其中随机矩阵理论作为一套比较完备的理论体系,在无线通信领域已经被国际上许多学者广泛关注,已然发展成为无线通信领域的一个非常重要的理论工具。 随机矩阵理论一经提出就收到国外学者的关注,2009年10月,在欧洲召开了以随机矩阵理论为主题的国际会议RMTfWC2009(Random Matrix Theory for Wireless Communications),这标志着随机矩阵理论在通信领域已经成为学术界的一个研究热点,与此同时许多国家都在该研究方向设立了专项研究基金[3]。随机矩阵是指一个以随机变量为元素的矩阵,与确定性矩阵相对应。1928年,Wishart等人最早提出了随机矩阵的概念并对其加以研究,主要是研究了随机矩阵元素、特征根在正态分布情形下的联合分布。而对于以随机矩阵为核心的随机矩阵理论,对于它的研究最早起源于上世纪50年代。当时,Wigner首次将随机矩阵理论与核物理练习到一起,并发明了著名的半圆律。随后Marcenko和Pastures发现了著名的M-P律,从此大维随机矩阵引起了数学家和物理学家浓厚的兴趣[4,5]。 2008年,Cardoso等人着重研究了随机矩阵理论中的极限渐近谱理论,并利用此理论成果求出了由多个认知用户接收信息组成的采样协方差矩阵的最大特征值和最小特征值的极限值。再次基础上,将这两个极限值的比值作为频谱感知的判决门限与检验统计量进行比较进而作出判决,由此设计出了一种协作频谱感知算法LSC算法。它的优点是无需知道任何认知用户发射机信号先验信息就能得到比较好的性能,这是当时绝大部分传统的感知方法做不到的[6]。 近几年,国内研究机构也逐渐加强了对频谱感知技术的关注,主要包括电子科技大学、清华大学、香港科技大学及西安交通大学等等。除了大学之外,许多公司、企业也纷纷加入到这个行列当中。例如,华为公司一直非常关注频谱感知的研究进展,并且以实际行动资助一些与之相关的学术研究工作。 2008年,曾永红提出了一种基于随机矩阵理论的最大特征检测算法即MED算法,它的提出主要是解决判决门限因恒定不变而无法适时调整的缺点。他重点研究了有关矩阵最大特征值的分布特性理论,通过推导获得了采样协方差矩阵最大特征值的概率分布函数,并根据次分布函数探索出了判决门限与虚警概率的关系,进而推导出了判决门限随虚警概率变化的数学表达式。通过设置不同的虚警概率取值,MED算法的判决门限根据实际情况动态调整,由此克服了门限恒定不变的缺点。但是MED算法也存在当认知节点数目和采样次数较小时感知性能收到不利影响的缺点[7]。 2011年,南京邮电大学的曹开田和杨震提出了一种新的基于最小特征值的合作感知算法。他们对多个认知用户的采样协方差矩阵的最小特征值进行了研究并获得了最小特征值的概率密度函数。 2 随机矩阵理论 随机矩阵的理论基础是概率论和数理统计,随机过程以及矩阵论。随机矩阵指的是一个以随机变量为基本元素的矩阵,其中如果随机矩阵的行数和列数都趋于无穷大,则称之为大维随机矩阵。目前所有的经典极限理论都假设数据的维数是固定的,但由于其自身的局限性,经典的极限理论不再适用于大维数据的情况。因此,在上世纪30年代Wishart等人提出了随机矩阵的概念,并对其进行了大量的研究[8]。 随机矩阵谱理论主要研究的是在满足一定条件的情况下,随机矩阵的经验谱分布函数所具备的一些优良特性,而这些特性恰好是血多确定性矩阵不具备的。例如,当非方阵的维数K与N都趋于无穷大,但比值K/N为以固定值β时,矩阵谱分布函数收敛到M-P率(Marcheko-Parstur率),其概率密度函数为式(2-1)。 (2-1) 其中,a、b分别是非方阵的最小特征值和最大特征值,渐近收敛值满足式(2-2)。 (2-2) 根据有关随机矩阵的理论,当矩阵元素分布不满足某个条件时,如有信号存在时矩阵元素的分布不是零均值独立同分布,这是矩阵的最大特征值和最小特征值将大于或小于渐进收敛值。利用这一特性,我们可以通过观察矩阵特征值的渐进收敛值是否在在M-P率的收敛范围之内来得出主用户频段是否空闲可用的结论[9]。 另外,随机矩阵谱理论还涉及到许多不同类型的矩阵。对于不同的通信系统,利用随机矩阵理论时所选择的矩阵也不相同,常见的作为研究对象的矩阵主要有以下几种。 1) Wigner矩阵:令一个厄尔米特随机矩阵如式(2-3)。 (2-3) 并且满足:包含对角线的上三角元素相互独立,且期望为0,方差为1,这样则称之为n维的Wigner。 2) 样本协方差矩阵:有一个复随机矩阵如式(2-4)suo`所示。 (2-4) 其中矩阵中的元素相互独立,且期望为0方差为1。 3) 广义样本协方差矩阵:我们将式(2-5)的矩阵叫做广义样本协方差矩阵。 (2-5) 它的样本协方差矩阵相比多了两个开方矩阵,如果是其中其它的特殊形式,那么矩阵就会有其它更多的应用,比如矩阵是矩阵和矩阵。 3基于随机矩阵理论的频谱感知 以简单的通信场景出发,最终要将主用户多发射天线、认知用户多接收天线的认知MIMO(Multiple-Input Multiple-Output)场景作为频谱感知的应用环境,这样在提高系统感知性能的同时也符合未来通信技术发展的需要。另外,选择多天线进行协作感知,这样可以通过增加数据量达到进一步提高感知性能的目的。 将随机矩阵理论应用于频谱感知当中,主要研究以下几个问题: 1) 稀疏重建问题:对于一个处于d维空间里的信号x,稀疏的概念如式(3-1)。 (3-1) 也就是说,对于一维信号,稀疏的含义是非零值的个数是有限的。它的度量有线性度量因子给出,形式如下(3-2)。 (3-2) 想要构建N=d是困难的,我们希望做到的是,因为x是稀疏的,所以它的有效长度n远小于它的维数d。 2) 度量矩阵:通过线性度量重构信号x,这需要一定的约束条件,数学表达式为(3-3)。 (3-3) 其中,是一个的矩阵,实现了长度从d到N的减少。 3) Candes-Tao定理:它是一个稍强的条件下产生的重建算法,并有一个定量条件而非定性条件,即在稀疏向量上需要是几乎等距的,完整的定理描述如下:假设度量是被限制等距的,那么对于所有的稀疏度为3n的稀疏向量x,存在式(3-4)的关系。 (3-4) 这样x的重构问题实际上就转化为一个求解凸优化的问题,用数学表达式如式(3-5)。 ,1范数的最小值 (3-5) 在分析图1-1所示是多个认知用户的协作感知场景,其中共有K个认知用户,各用户同时对主用户信号进行检测,共同感知频段是否空闲可用。 图1-1多个认知用户的协作感知场景 每个认知用户的接收天线都要对主用户信号进行接收,设采样次数为N,这样共有个数据,可将它们组成一个的矩阵如式(3-6)。 (3-6) 得到上面的采样矩阵之后,由于它是非方阵,处理起来不方便,因此我们将它作下面的处理如式(3-7)。 (3-7) 这样可以得到一个K阶方阵A,我们称之为采样协方差矩阵。利用采样协方差矩阵进行研究,既可以保留原来数据的信息,同时还可以利用方阵的一些如特征值等特性进行分析研究。 4总结 本论文主要讨论的内容是随机矩阵理论在频谱感知上的应用,利用随机矩阵理论找到高性能的频谱感知算法,使得在影响主用户正常使用的前提下,尽可能地检测出主用户未占用的空闲频段,已达到节约频谱资源、提高频谱利用率的目的。 5参考文献 [1]徐赞新,王钺,司洪波,冯振明.基于随机矩阵理论的城市人群移动行为分析[J].物理学报,2011,04. [2]Chuanhai JIAO, Keren WANG, Shou MEN. Cooperative blind spectrum sensing using autocorrelation matrix[J]. The Journal of Posts and Telecommunication,2011,183. [3]王小英.大维样本协方差矩阵的线性谱统计量的中心极限定理[D].东北师范大学.2009. [4]Yonghong Zeng, Yingchang Liang. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio[J].IEEE transactions on communications.2009,Vol.57,No.6.P1784-1793. [5]Lei Wang, Baoyu Zheng, Jingwu Cui, Wenjing Yue. Spectrum Sensing Using Non-asymptotic Behavior of Eigenvalues[J]. IEEE, 2011. [6]Huiqin Li, Zhidong Bai. Extreme Eigenvalues of Large Dimensional Quaternion Sample Covariance Matrices[J]. Journal of Statical Planning and Inferece, 2014. [7]Antonia M Tulina Sergio verdu. Random Matrix Theory and Wireless Communications[J]. Foundations and Trends in Communications and Information Theory Vol.1, No 1,2004. [8]Yang Ou, Yiming Wang. Multiple Antennas Spectrum Sensing for Cognitive Radio Networks[J]. Journal of Networks, 2013, 83. [9]Wenjie Zheng, Chai Kiat Yeo. Sequential Sensing Based Spectrum Handoff in Cognitive Radio Networks with Multiple Users[J]. Computer Networks, 2013.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服