收藏 分销(赏)

《现代控制理论》第3版(刘豹-唐万生)课后习题答案.doc

上传人:精**** 文档编号:2565723 上传时间:2024-06-01 格式:DOC 页数:36 大小:2.35MB
下载 相关 举报
《现代控制理论》第3版(刘豹-唐万生)课后习题答案.doc_第1页
第1页 / 共36页
《现代控制理论》第3版(刘豹-唐万生)课后习题答案.doc_第2页
第2页 / 共36页
点击查看更多>>
资源描述
(完整版)《现代控制理论》第3版(刘豹_唐万生)课后习题答案 《现代控制理论参考答案》 第一章答案 1-1 试求图1—27系统的模拟结构图,并建立其状态空间表达式. 解:系统的模拟结构图如下: 系统的状态方程如下: 令,则 所以,系统的状态空间表达式及输出方程表达式为 1—2有电路如图1—28所示。以电压为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程. 解:由图,令,输出量 有电路原理可知: 既得 写成矢量矩阵形式为: 1—4 两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵. 解:系统的状态空间表达式如下所示: 1—5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图. 解:令,则有 相应的模拟结构图如下: 1—6 (2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图 解: 1—7 给定下列状态空间表达式 ‘ (1) 画出其模拟结构图 (2) 求系统的传递函数 解: (2) 1-8 求下列矩阵的特征矢量 (3) 解:A的特征方程 解之得: 当时, 解得: 令 得 (或令,得) 当时, 解得: 令 得 (或令,得) 当时, 解得: 令 得 1—9将下列状态空间表达式化成约旦标准型(并联分解) (2) 解:A的特征方程 当时, 解之得 令 得 当时, 解之得 令 得 当时, 解之得 令 得 约旦标准型 1—10 已知两系统的传递函数分别为W1(s)和W2(s) 试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结 1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为 求系统的闭环传递函数 解: 1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为 求系统的闭环传递函数 解: 1-12 已知差分方程为 试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为 (1) 解法1: 解法2: 求T,使得 得 所以 所以,状态空间表达式为 第二章习题答案 2—4 用三种方法计算以下矩阵指数函数. (2) A= 解:第一种方法: 令 则 ,即。 求解得到, 当时,特征矢量 由 ,得 即,可令 当时,特征矢量 由,得 即 ,可令 则, 第二种方法,即拉氏反变换法: 第三种方法,即凯莱—哈密顿定理 由第一种方法可知, 2—5 下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A阵。 (3) (4) 解:(3)因为 ,所以该矩阵满足状态转移矩阵的条件 (4)因为,所以该矩阵满足状态转移矩阵的条件 2—6 求下列状态空间表达式的解: 初始状态,输入时单位阶跃函数。 解: 因为 , 2—9 有系统如图2.2所示,试求离散化的状态空间表达式。设采样周期分别为T=0.1s和1s,而和为分段常数。 图2.2 系统结构图 解:将此图化成模拟结构图 列出状态方程 则离散时间状态空间表达式为 由和得: 当T=1时 当T=0。1时 第三章习题 3-1判断下列系统的状态能控性和能观测性.系统中a,b,c,d的取值对能控性和能观性是否有关,若有关,其取值条件如何? (1)系统如图3。16所示: 解:由图可得: 状态空间表达式为: 由于、、与无关,因而状态不能完全能控,为不能控系统。由于只与有关,因而系统为不完全能观的,为不能观系统. (3)系统如下式: 解:如状态方程与输出方程所示,A为约旦标准形。要使系统能控,控制矩阵b中相对于约旦块的最后一行元素不能为0,故有。 要使系统能观,则C中对应于约旦块的第一列元素不全为0,故有。 3—2时不变系统 试用两种方法判别其能控性和能观性。 解:方法一: 方法二:将系统化为约旦标准形。 , 中有全为零的行,系统不可控.中没有全为0的列,系统可观。 3—3确定使下列系统为状态完全能控和状态完全能观的待定常数 解:构造能控阵: 要使系统完全能控,则,即 构造能观阵: 要使系统完全能观,则,即 3—4设系统的传递函数是 (1)当a取何值时,系统将是不完全能控或不完全能观的? (2)当a取上述值时,求使系统的完全能控的状态空间表达式。 (3)当a取上述值时,求使系统的完全能观的状态空间表达式。 解:(1) 方法1 : 系统能控且能观的条件为W(s)没有零极点对消.因此当a=1,或a=3或a=6时,系统为不能控或不能观。 方法2: 系统能控且能观的条件为矩阵C不存在全为0的列。因此当a=1,或a=3或a=6时,系统为不能控或不能观。 (2)当a=1, a=3或a=6时,系统可化为能控标准I型 (3)根据对偶原理,当a=1, a=2或a=4时,系统的能观标准II型为 3-6已知系统的微分方程为: 试写出其对偶系统的状态空间表达式及其传递函数。 解: 系统的状态空间表达式为 传递函数为 其对偶系统的状态空间表达式为: 传递函数为 3—9已知系统的传递函数为 试求其能控标准型和能观标准型。 解: 系统的能控标准I型为 能观标准II型为 3-10给定下列状态空间方程,试判别其是否变换为能控和能观标准型. 解: 3—11试将下列系统按能控性进行分解 (1) 解: rankM=2<3,系统不是完全能控的。 构造奇异变换阵:,其中是任意的,只要满足满秩. 即 得 3—12 试将下列系统按能观性进行结构分解 (1) 解: 由已知得 则有 rank N=2<3,该系统不能观 构造非奇异变换矩阵,有 则 3-13 试将下列系统按能控性和能观性进行结构分解 (1) 解:由已知得 rank M=3,则系统能控 rank N=3,则系统能观 所以此系统为能控并且能观系统 取,则 则,, 3—14求下列传递函数阵的最小实现. (1) 解: ,, ,, 系统能控不能观 取,则 所以, , 所以最小实现为,,, 验证: 3-15设和是两个能控且能观的系统 (1)试分析由和所组成的串联系统的能控性和能观性,并写出其传递函数; (2)试分析由和所组成的并联系统的能控性和能观性,并写出其传递函数。 解: (1)和串联 当的输出是的输入时, , 则rank M=2<3,所以系统不完全能控. 当得输出是的输入时 , 因为 rank M=3 则系统能控 因为 rank N=2<3 则系统不能观 (2)和并联 , 因为rank M=3,所以系统完全能控 因为rank N=3,所以系统完全能观 现代控制理论第四章习题答案 4—1判断下列二次型函数的符号性质: (1) (2) 解:(1)由已知得 ,, 因此是负定的 (2)由已知得 ,, 因此不是正定的 4-2已知二阶系统的状态方程: 试确定系统在平衡状态处大范围渐进稳定的条件. 解:方法(1):要使系统在平衡状态处大范围渐进稳定,则要求满足A的特征值均具有负实部。 即: 有解,且解具有负实部。 即: 方法(2):系统的原点平衡状态为大范围渐近稳定,等价于. 取,令,则带入,得到 若 ,则此方程组有唯一解。即 其中 要求正定,则要求 因此,且 4-3试用lyapunov第二法确定下列系统原点的稳定性。 (1) (2) 解:(1)系统唯一的平衡状态是.选取Lyapunov函数为,则 是负定的。,有.即系统在原点处大范围渐近稳定。 (2)系统唯一的平衡状态是。选取Lyapunov函数为,则 是负定的。,有。即系统在原点处大范围渐近稳定。 4-6设非线性系统状态方程为: 试确定平衡状态的稳定性。 解:若采用克拉索夫斯基法,则依题意有: 取 很明显,的符号无法确定,故改用李雅普诺夫第二法。选取Lyapunov函数为,则 是负定的。,有。即系统在原点处大范围渐近稳定。 4—9设非线性方程: 试用克拉索夫斯基法确定系统原点的稳定性. 解:(1)采用克拉索夫斯基法,依题意有: ,有。 取 则 ,根据希尔维斯特判据,有: ,的符号无法判断。 (2)李雅普诺夫方法:选取Lyapunov函数为,则 是负定的。,有。即系统在原点处大范围渐近稳定。 4—12试用变量梯度法构造下列系统的李雅普诺夫函数 解:假设的梯度为: 计算的导数为: 选择参数,试选,于是得: ,显然满足旋度方程,表明上述选择的参数是允许的。则有: 如果,则是负定的,因此,是的约束条件。 计算得到为: 是正定的,因此在范围内,是渐进稳定的。 现代控制理论第五章习题答案 5-1已知系统状态方程为: 试设计一状态反馈阵使闭环系统极点配置为-1,—2,-3。 解:依题意有: ,系统能控。 系统的特征多项式为: 则将系统写成能控标准I型,则有. 引入状态反馈后,系统的状态方程为:,其中矩阵,设,则系统的特征多项式为: 根据给定的极点值,得到期望特征多项式为: 比较各对应项系数,可解得:则有:。 5—3有系统: (1) 画出模拟结构图。 (2) 若动态性能不满足要求,可否任意配置极点? (3) 若指定极点为-3,—3,求状态反馈阵。 解(1)系统模拟结构图如下: (2)系统采用状态反馈任意配置极点的充要条件是系统完全能控. 对于系统有: ,系统能控,故若系统动态性能不满足要求,可任意配置极点。 (3)系统的特征多项式为: 则将系统写成能控标准I型,则有. 引入状态反馈后,系统的状态方程为:,设,则系统的特征多项式为: 根据给定的极点值,得到期望特征多项式为: 比较各对应项系数,可解得:。 5—4设系统传递函数为 试问能否利用状态反馈将传递函数变成 若有可能,试求出状态反馈,并画出系统结构图。 解: 由于传递函数无零极点对消,因此系统为能控且能观. 能控标准I型为 令为状态反馈阵,则闭环系统的特征多项式为 由于状态反馈不改变系统的零点,根据题意,配置极点应为—2,-2,—3,得期望特征多项式为 比较与的对应项系数,可得 即 系统结构图如下: 5-5使判断下列系统通过状态反馈能否镇定. (1) 解:系统的能控阵为: ,系统能控. 由定理5。2.1可知,采用状态反馈对系统任意配置极点的充要条件是完全能控。又由于,系统能控,可以采用状态反馈将系统的极点配置在根平面的左侧,使闭环系统镇定。 5-7设计一个前馈补偿器,使系统 解耦,且解耦后的极点为。 解: 5-10已知系统: 试设计一个状态观测器,使观测器的极点为-r,—2r(r>0)。 解:因为满秩,系统能观,可构造观测器。 系统特征多项式为,所以有 于是 引入反馈阵,使得观测器特征多项式: 根据期望极点得期望特征式: 比较与各项系数得: 即,反变换到x状态下 观测器方程为:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服