收藏 分销(赏)

数学公式及知识点汇总.doc

上传人:精**** 文档编号:2565647 上传时间:2024-06-01 格式:DOC 页数:20 大小:2.70MB
下载 相关 举报
数学公式及知识点汇总.doc_第1页
第1页 / 共20页
数学公式及知识点汇总.doc_第2页
第2页 / 共20页
数学公式及知识点汇总.doc_第3页
第3页 / 共20页
数学公式及知识点汇总.doc_第4页
第4页 / 共20页
数学公式及知识点汇总.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、个人收集整理 勿做商业用途平面解析几何简易逻辑1、命题:用语言、符号或式子表达的,可以判断真假的陈述句。真命题:判断为真的语句。假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论。3、原命题:“若,则” 逆命题: “若,则” 否命题:“若,则” 逆否命题:“若,则”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系5、若,则是的充分条件,是的必要条件若,则是的充要条件(充分必要条件)利用集合间的包含关系: 例如:若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要

2、条件;6、逻辑联结词:且(and) :命题形式;或(or):命题形式;非(not):命题形式.真真真真假真假假真假假真假真真假假假假真7、全称量词“所有的”、“任意一个等,用“表示; 全称命题p:; 全称命题p的否定p:。存在量词“存在一个”、“至少有一个等,用“”表示; 特称命题p:; 特称命题p的否定p:;1、命题:用语言、符号或式子表达的,可以判断真假的陈述句。真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则形式的命题中的称为命题的条件,称为命题的结论。3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另

3、一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题。若原命题为“若,则,则它的否命题为“若,则”。5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若,则”,则它的否命题为“若,则.6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假四种命题的真假性之间的关系:两个命

4、题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系7、若,则是的充分条件,是的必要条件若,则是的充要条件(充分必要条件)8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题用联结词“或把命题和命题联结起来,得到一个新命题,记作当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题对一个命题全盘否定,得到一个新命题,记作若是真命题,则必是假命题;若是假命题,则必是真命题9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示含有全称量词的命

5、题称为全称命题全称命题“对中任意一个,有成立”,记作“,”短语“存在一个”、“至少有一个在逻辑中通常称为存在量词,用“”表示含有存在量词的命题称为特称命题特称命题“存在中的一个,使成立”,记作“,”10、全称命题:,,它的否定:,全称命题的否定是特称命题第二部分 圆锥曲线1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆即:。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距2、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、轴长短轴的长 长轴的长焦点、焦距对称性关于轴、轴、原点对称离心率3、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨

6、迹称为双曲线即:。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距4、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于原点中心对称离心率渐近线方程5、实轴和虚轴等长的双曲线称为等轴双曲线6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线定点称为抛物线的焦点,定直线称为抛物线的准线7、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围8、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即9、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,

7、焦点为,则;8参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。9圆的参数方程可表示为. 椭圆的参数方程可表示为。 抛物线的参数方程可表示为。 经过点,倾斜角为的直线的参数方程可表示为(为参数)。10在建立曲线的参数方程时,要注明参数及参数的取值范围.在参数方程与普通方程的互化中,必须使的取值范围保持一致.11、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭

8、圆这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、轴长短轴的长 长轴的长焦点、焦距对称性关于轴、轴、原点对称离心率准线方程13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则14、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程16、实轴和虚

9、轴等长的双曲线称为等轴双曲线17、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线定点称为抛物线的焦点,定直线称为抛物线的准线19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围22、空间向量的概念:在空间,具有大小和方向的量称为空间向量向量可用一条有向线段来表示有向线段的长度表示向量

10、的大小,箭头所指的方向表示向量的方向向量的大小称为向量的模(或长度),记作模(或长度)为的向量称为零向量;模为的向量称为单位向量与向量长度相等且方向相反的向量称为的相反向量,记作方向相同且模相等的向量称为相等向量代数数列7、数列:按照一定顺序排列着的一列数 8、数列的项:数列中的每一个数9、有穷数列:项数有限的数列 10、无穷数列:项数无限的数列11、递增数列:从第2项起,每一项都不小于它的前一项的数列12、递减数列:从第2项起,每一项都不大于它的前一项的数列13、常数列:各项相等的数列 14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列 15、数列的通项公式:表示数

11、列的第项与序号之间的关系的公式 16、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差18、由三个数,,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项若,则称为与的等差中项19、若等差数列的首项是,公差是,则20、通项公式的变形:;21、若是等差数列,且(、),则;若是等差数列,且(、),则22、等差数列的前项和的公式:;23、等差数列的前项和的性质:若项数为,则,且,若项数为,则,且,(其中,)24、如果一个数列从第项起,每一项与它的前一项的比等

12、于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比25、在与中间插入一个数,使,,成等比数列,则称为与的等比中项若,则称为与的等比中项注意:与的等比中项可能是26、若等比数列的首项是,公比是,则27、通项公式的变形:;;28、若是等比数列,且(、),则;若是等比数列,且(、),则29、等比数列的前项和的公式:30、等比数列的前项和的性质:若项数为,则,成等比数列数列、极限、归纳法一、等差、等比数列的有关知识等差数列(AP)等比数列(GP)定义常数的常数通项公式叠加公式叠乘:增减性d0递增常数列递减递增递减常数列摆动数列前n项和推导方法:例写相加 乘公比错位相减中 项A为a、b的等

13、差中项G为a、b的等比中项 6、为AP,其前n项和为,求的前n项和a10,d0时,则数列为减,设时,,时,则:a10,d0时,数列为增,设时,时如的前n项和,求不等式31、;32、不等式的性质: ;;,;34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式二次函数的图象一元二次方程的根有两个相异实数根 有两个相等实数根没有实数根一元二次不等式的解集41、设、是两个正数,则称为正数、的算术平均数,称为正数、的几何平均数42、均值不等式定理: 若,,则,即43、常用的基本不等式:;;44、极值定理:设、都为正数,则有若(和为定值),则当时,积取得最大值若(积为定值),则当时

14、,和取得最小值第三部分 导数及其应用1、函数从到的平均变化率: 2、导数定义:在点处的导数记作;3、函数在点处的导数的几何意义是曲线在点处的切线的斜率 4、常见函数的导数公式:; ;;; ;5、导数运算法则: ; ;6、在某个区间内,若,则函数在这个区间内单调递增;若,则函数在这个区间内单调递减7、求函数的极值的方法是:解方程当时:如果在附近的左侧,右侧,那么是极大值;如果在附近的左侧,右侧,那么是极小值8、求函数在上的最大值与最小值的步骤是:求函数在内的极值;将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值9、导数在实际问题中的应用:最优化问题。基本导数公式汇

15、编第四部分 复数1概念:(1) z=a+biRb=0 (a,bR)z= z20;(2) z=a+bi是虚数b0(a,bR);(3) z=a+bi是纯虚数a=0且b0(a,bR)z0(z0)z20;(4) a+bi=c+dia=c且c=d(a,b,c,dR);2复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,dR),则:(1) z 1z2 = (a + b) (c + d)i;(2) z1.z2 = (a+bi)(c+di)(ac-bd)+ (ad+bc)i;(3) z1z2 = (z20) ;3几个重要的结论:(1) ;(2) 性质:T=4;(3) 。

16、4运算律:(1)5共轭的性质: ; ; ; .6模的性质:;立体几何22、空间向量的概念:在空间,具有大小和方向的量称为空间向量向量可用一条有向线段来表示有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向向量的大小称为向量的模(或长度),记作模(或长度)为的向量称为零向量;模为的向量称为单位向量与向量长度相等且方向相反的向量称为的相反向量,记作方向相同且模相等的向量称为相等向量23、空间向量的加法和减法:求两个向量和的运算称为向量的加法,它遵循平行四边形法则即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边

17、形法则求两个向量差的运算称为向量的减法,它遵循三角形法则即:在空间任取一点,作,,则24、实数与空间向量的乘积是一个向量,称为向量的数乘运算当时,与方向相同;当时,与方向相反;当时,为零向量,记为的长度是的长度的倍25、设,为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律分配律:;结合律:26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线27、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使28、平行于同一个平面的向量称为共面向量29、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,使;

18、或对空间任一定点,有;或若四点,共面,则30、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作两个向量夹角的取值范围是:31、对于两个非零向量和,若,则向量,互相垂直,记作32、已知两个非零向量和,则称为,的数量积,记作即零向量与任何向量的数量积为33、等于的长度与在的方向上的投影的乘积34、若,为非零向量,为单位向量,则有;;,,;35、向量数乘积的运算律:;36、若,,是空间三个两两垂直的向量,则对空间任一向量,存在有序实数组,使得,称,为向量在,,上的分量37、空间向量基本定理:若三个向量,不共面,则对空间任一向量,存在实数组,使得38、若三个向量,,不共面,则所有空间

19、向量组成的集合是这个集合可看作是由向量,生成的,称为空间的一个基底,称为基向量空间任意三个不共面的向量都可以构成空间的一个基底39、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别以,,的方向为轴,轴,轴的正方向建立空间直角坐标系则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量存在有序实数组,使得把,,称作向量在单位正交基底,下的坐标,记作此时,向量的坐标是点在空间直角坐标系中的坐标40、设,,则 若、为非零向量,则若,则,则41、在空间中,取一定点作为基点,那么空间中任意一点的位置可以用向量来表示向量称为点的位置向量42

20、、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可以确定直线的位置,还可以具体表示出直线上的任意一点43、空间中平面的位置可以由内的两条相交直线来确定设这两条相交直线相交于点,它们的方向向量分别为,为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置44、直线垂直,取直线的方向向量,则向量称为平面的法向量45、若空间不重合两条直线,的方向向量分别为,则,46、若直线的方向向量为,平面的法向量为,且,则,47、若空间不重合的两个平面,的法向量分别为,则,48、设异面直线,的夹角为,

21、方向向量为,其夹角为,则有49、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有50、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小若二面角的平面角为,则51、点与点之间的距离可以转化为两点对应向量的模计算52、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为53、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为三角1、正弦定理:在中,、分别为角、的对边,为的外接圆的半径,则有2、正弦定理的变形公式:,,;,;; 3、三角形面积公式: 4、余弦定理:在中,有, 5、余弦定理的推论:,6、设、是的角、的对边,则:若,则;若,则;若,则

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服