ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:2.70MB ,
资源ID:2565647      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2565647.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(数学公式及知识点汇总.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数学公式及知识点汇总.doc

1、个人收集整理 勿做商业用途 平面解析几何 简易逻辑 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句。 真命题:判断为真的语句。假命题:判断为假的语句. 2、“若,则”形式的命题中的称为命题的条件,称为命题的结论。 3、原命题:“若,则” 逆命题: “若,则” 否命题:“若,则” 逆否命题:“若,则” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若,则是的充分条件,是的必要条件. 若,则是的充要条件(充分必要条件). 利用集合间的包含关系: 例如:

2、若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件; 6、逻辑联结词:⑴且(and) :命题形式;⑵或(or):命题形式; ⑶非(not):命题形式. 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 7、⑴全称量词——“所有的”、“任意一个"等,用“"表示; 全称命题p:; 全称命题p的否定p:。 ⑵存在量词——“存在一个”、“至少有一个"等,用“”表示; 特称命题p:; 特称命题p的否定p:; 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句。

3、真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若,则"形式的命题中的称为命题的条件,称为命题的结论。 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若,则”,它的逆命题为“若,则”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题。 若原命题为“若,则",则它的否命题为“若,则”。 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论

4、的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。 若原命题为“若,则”,则它的否命题为“若,则". 6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系: 两个命题互为逆否命题,它们有相同的真假性; 两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若,则是的充分条件,是的必要条件. 若,则是的充要条件(充分必要条件). 8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作.

5、 当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题. 用联结词“或"把命题和命题联结起来,得到一个新命题,记作. 当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题. 对一个命题全盘否定,得到一个新命题,记作. 若是真命题,则必是假命题;若是假命题,则必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示. 含有全称量词的命题称为全称命题. 全称命题“对中任意一个,有成立”,记作“,”. 短语“存在一个”、“至少有一个"在逻辑中通常称为存在量词,用“”表示. 含有存在量词的命题称为特称命题

6、. 特称命题“存在中的一个,使成立”,记作“,”. 10、全称命题:,,它的否定:,.全称命题的否定是特称命题. 第二部分 圆锥曲线 1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆. 即:。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 且 且 顶点 、 、 、 、 轴长 短轴的长 长轴的长 焦点 、 、 焦距 对称性 关于轴、轴、原点对称 离心率 3、平面内与两个定点,的距离之差的绝对值等于

7、常数(小于)的点的轨迹称为双曲线.即:。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 或, 或, 顶点 、 、 轴长 虚轴的长 实轴的长 焦点 、 、 焦距 对称性 关于轴、轴对称,关于原点中心对称 离心率 渐近线方程 5、实轴和虚轴等长的双曲线称为等轴双曲线. 6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线. 7、抛物线的几何性质: 标

8、准方程 图形 顶点 对称轴 轴 轴 焦点 准线方程 离心率 范围 8、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即. 9、焦半径公式: 若点在抛物线上,焦点为,则; 若点在抛物线上,焦点为,则; 8.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。 相对于参数方

9、程而言,直接给出点的坐标间关系的方程叫做普通方程。 9.圆的参数方程可表示为. 椭圆的参数方程可表示为。 抛物线的参数方程可表示为。   经过点,倾斜角为的直线的参数方程可表示为(为参数)。 10.在建立曲线的参数方程时,要注明参数及参数的取值范围.在参数方程与普通方程的互化中,必须使的取值范围保持一致. 11、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 且 且 顶点 、

10、 、 、 、 轴长 短轴的长 长轴的长 焦点 、 、 焦距 对称性 关于轴、轴、原点对称 离心率 准线方程 13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则. 14、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 15、双曲线的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 或, 或, 顶点 、 、 轴长 虚轴的长 实轴的长 焦点 、 、

11、 焦距 对称性 关于轴、轴对称,关于原点中心对称 离心率 准线方程 渐近线方程 16、实轴和虚轴等长的双曲线称为等轴双曲线. 17、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则. 18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线. 19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即. 20、焦半径公式: 若点在抛物线上,焦点为,则; 若点在抛物线上,焦点为,则; 若点在抛物线上,焦点为,则; 若点在抛物线上,焦点为,则.

12、 21、抛物线的几何性质: 标准方程 图形 顶点 对称轴 轴 轴 焦点 准线方程 离心率 范围 22、空间向量的概念: 在空间,具有大小和方向的量称为空间向量. 向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. 向量的大小称为向量的模(或长度),记作. 模(或长度)为的向量称为零向量;模为的向量称为单位向量. 与向量长度相等且方向相反的向量称为的相反向量,记作. 方向相同且模相等的向量称为相等向量. 代

13、数 数列 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列. 14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列的第项与序号之间的关系的公式. 16、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一

14、个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 18、由三个数,,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项.若,则称为与的等差中项. 19、若等差数列的首项是,公差是,则. 20、通项公式的变形:①;②;③; ④;⑤. 21、若是等差数列,且(、、、),则;若是等差数列,且(、、),则. 22、等差数列的前项和的公式:①;②. 23、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,). 24、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比. 25、在与中间

15、插入一个数,使,,成等比数列,则称为与的等比中项.若,则称为与的等比中项.注意:与的等比中项可能是 26、若等比数列的首项是,公比是,则. 27、通项公式的变形:①;②;③;④. 28、若是等比数列,且(、、、),则;若是等比数列,且(、、),则. 29、等比数列的前项和的公式:. 30、等比数列的前项和的性质:①若项数为,则. ②.③,,成等比数列. 数列、极限、归纳法 一、等差、等比数列的有关知识 等差数列(A·P) 等比数列(G·P) 定义 常数 的常数 通项公式 ① ② ③叠加公式 ① ② ③叠乘: 增减性 d>0递增 常数列

16、 递减 递增 递减 常数列 摆动数列 前n项和 推导方法:例写相加 乘公比错位相减 中 项 A为a、b的等差中项 G为a、b的等比中项 6、为A·P, 其前n项和为,求的前n项和 ⑴a1>0,d〈0时,则数列为减,设时,,时, 则: ⑵a1〈0,d〉0时,数列为增,设时,时 如的前n项和,求 不等式 31、;;. 32、不等式的性质: ①;②;③; ④,;⑤; ⑥;⑦; ⑧. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系: 判别式 二次函数 的图象 一元二次方程 的

17、根 有两个相异实数根 有两个相等实数根 没有实数根 一元二次不等式的解集 41、设、是两个正数,则称为正数、的算术平均数,称为正数、的几何平均数. 42、均值不等式定理: 若,,则,即. 43、常用的基本不等式:①;②; ③;④. 44、极值定理:设、都为正数,则有 ⑴若(和为定值),则当时,积取得最大值. ⑵若(积为定值),则当时,和取得最小值. 第三部分 导数及其应用 1、函数从到的平均变化率: 2、导数定义:在点处的导数记作;. 3、函数在点处的导数的几何意义是曲线在点处的切线的斜率. 4

18、常见函数的导数公式: ①;②; ③;④; ⑤;⑥; ⑦;⑧ 5、导数运算法则: ; ; . 6、在某个区间内,若,则函数在这个区间内单调递增; 若,则函数在这个区间内单调递减. 7、求函数的极值的方法是:解方程.当时: 如果在附近的左侧,右侧,那么是极大值; 如果在附近的左侧,右侧,那么是极小值. 8、求函数在上的最大值与最小值的步骤是: 求函数在内的极值; 将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值. 9、导数在实际问题中的应用:最优化问题。 基本导数公式汇编 第四部分 复数

19、1.概念: (1) z=a+bi∈Rb=0 (a,b∈R)z= z2≥0; (2) z=a+bi是虚数b≠0(a,b∈R); (3) z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+=0(z≠0)z2〈0; (4) a+bi=c+dia=c且c=d(a,b,c,d∈R); 2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则: (1) z 1±z2 = (a + b)± (c + d)i; (2) z1.z2 = (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i; (3) z1÷z2 = (z2≠0) ;

20、 3.几个重要的结论: (1) ;⑷ (2) 性质:T=4;; (3) 。 4.运算律:(1) 5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ . 6.模的性质:⑴;⑵;⑶;⑷ 立体几何 22、空间向量的概念: 在空间,具有大小和方向的量称为空间向量. 向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. 向量的大小称为向量的模(或长度),记作. 模(或长度)为的向量称为零向量;模为的向量称为单位向量. 与向量长度相等且方向相反的向量称为的相反向量,记作. 方向相同且模相等的向量称为相等向量. 23、空间向量

21、的加法和减法: 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则. 求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点,作,,则. 24、实数与空间向量的乘积是一个向量,称为向量的数乘运算.当时,与方向相同;当时,与方向相反;当时,为零向量,记为.的长度是的长度的倍. 25、设,为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律. 分配律:;结合律:. 26、如果表示空间的有向线段所在的直线互相平行或重合,则这些

22、向量称为共线向量或平行向量,并规定零向量与任何向量都共线. 27、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使. 28、平行于同一个平面的向量称为共面向量. 29、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,,使;或对空间任一定点,有;或若四点,,,共面,则. 30、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作.两个向量夹角的取值范围是:. 31、对于两个非零向量和,若,则向量,互相垂直,记作. 32、已知两个非零向量和,则称为,的数量积,记作.即.零向量与任何向量的数量积为. 33、等于的长度与在的方向上的投影的

23、乘积. 34、若,为非零向量,为单位向量,则有; ;,,; ;. 35、向量数乘积的运算律:;; . 36、若,,是空间三个两两垂直的向量,则对空间任一向量,存在有序实数组,使得,称,,为向量在,,上的分量. 37、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得. 38、若三个向量,,不共面,则所有空间向量组成的集合是 .这个集合可看作是由向量,,生成的, 称为空间的一个基底,,,称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底. 39、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别

24、以,,的方向为轴,轴,轴的正方向建立空间直角坐标系.则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量.存在有序实数组,使得.把,,称作向量在单位正交基底,,下的坐标,记作.此时,向量的坐标是点在空间直角坐标系中的坐标. 40、设,,则. . . . 若、为非零向量,则. 若,则. . . ,,则. 41、在空间中,取一定点作为基点,那么空间中任意一点的位置可以用向量来表示.向量称为点的位置向量. 42、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定.点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可

25、以确定直线的位置,还可以具体表示出直线上的任意一点. 43、空间中平面的位置可以由内的两条相交直线来确定.设这两条相交直线相交于点,它们的方向向量分别为,.为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置. 44、直线垂直,取直线的方向向量,则向量称为平面的法向量. 45、若空间不重合两条直线,的方向向量分别为,,则 ,. 46、若直线的方向向量为,平面的法向量为,且,则 ,. 47、若空间不重合的两个平面,的法向量分别为,,则 ,. 48、设异面直线,的夹角为,方向向量为,,其夹角为,则有 . 49、设直线的方向向量为,平面的法向量为,与所成

26、的角为,与的夹角为,则有. 50、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小.若二面角的平面角为,则. 51、点与点之间的距离可以转化为两点对应向量的模计算. 52、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为. 53、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为. 三角 1、正弦定理:在中,、、分别为角、、的对边,为的外接圆的半径,则有. 2、正弦定理的变形公式:①,,; ②,,;③; ④. 3、三角形面积公式:. 4、余弦定理:在中,有,, . 5、余弦定理的推论:,,. 6、设、、是的角、、的对边,则:①若,则; ②若,则;③若,则.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服