1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1已知线段a是线段b,c的比例中项,则下列式子一定成立的是( )ABCD2计算的结果是( )ABCD3掷一枚质地均匀的硬币10次,下列说法正确的是( )A必有5次正面朝上B可能
2、有5次正面朝上C掷2次必有1次正面朝上D不可能10次正面朝上4反比例函数与在同一坐标系的图象可能为( )ABCD5已知,则的值是( )AB2CD6如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF2,则矩形的面积为()A32B28C30D367如图,OABOCD,OA:OC3:2,A,C,OAB与OCD的面积分别是S1和S2,OAB与OCD的周长分别是C1和C2,则下列等式一定成立的是()ABCD8如图所示,抛物线y=ax+bx+c(a0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列5个结论中,其中正确的是( )abc0;4a+c0;
3、方程ax+bx+c=3两个根是=0,=2;方程ax+bx+c=0有一个实数根大于2;当x0,y随x增大而增大A4B3C2D19如图,ABC中,DEBC,则下列等式中不成立的是()ABCD10抛物线y(x)22的顶点坐标是()A(,2)B(,2)C(,2)D(,2)二、填空题(每小题3分,共24分)11如图,已知等边,顶点在双曲线上,点的坐标为(2,0)过作,交双曲线于点,过作交轴于,得到第二个等边过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,则点的坐标为_,的坐标为_12如图,AB是O的直径,C、D为O上的点,P为圆外一点,PC、PD均与圆相切,设A+B130,CPD,则_13已知,
4、则_14如图,在边长为的正方形中,将射线绕点按顺时针方向旋转度,得到射线,点是点关于射线的对称点,则线段长度的最小值为_15计算:2sin245tan45_16如图,将沿方向平移得到,与重叠部分(即图中阴影部分)的面积是面积的,若,则平移的距离是_,17如图,在平面直角坐标系xOy中,已知点A(3,3)和点B(7,0),则tanABO_18如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为_米三、解答题(共66分)19
5、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB4,BC1若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动(1)当OAD30时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cosOAD的值20(6分)某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.21(6分)如图,已知一次函数与反比例函数的图象相交于点,与轴相交于点.(1)填
6、空:的值为 ,的值为 ;(2)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;22(8分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile参考数据:1.41,1.73,2.45)23(8分)如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为 ;点的坐标为 ;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一
7、点,的面积恰好等于正方形的面积,求点的坐标.24(8分)解方程:x24x21=125(10分)如图,四边形ABCD是正方形,ADF旋转一定角度后得到ABE,且点E在线段AD上,若AF=4,F=60(1)指出旋转中心和旋转角度;(2)求DE的长度和EBD的度数26(10分)如图,在边长为1的正方形组成的网格中,AOB的顶点均在格点上,其中点A(5,4),B(1,3),将AOB绕点O逆时针旋转90后得到A1OB1(1)画出A1OB1;(2)在旋转过程中点B所经过的路径长为_;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和参考答案一、选择题(每小题3分,共30分)1、B【解析】根据比例的性质
8、列方程求解即可解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项【详解】A选项,由 得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【点睛】本题考核知识点:本题主要考查了比例线段解题关键点:理解比例中项的意义.2、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果【详解】解:=,故选C【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟
9、练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键3、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确可能10次正面朝上,选项D不正确故选:B【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件4、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可【详解】A 根据反比例函数的图象可知,k0,因此可得一次函数的图象应该递减,
10、但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.5、C【分析】设x=5k(k0),y=2k(k0),代入求值即可【详解】解:x=5k(k0),y=2k(k0)故选:C【点睛】本题考查分式的性质及化简求值,
11、根据题意,正确计算是解题关键6、A【分析】连接BD交EF于O,由折叠的性质可推出BDEF,BODO,然后证明EDOFBO,得到OEOF,设BCx,利用勾股定理求BO,再根据BOFBCD,列出比例式求出x,即可求矩形面积【详解】解:连接BD交EF于O,如图所示:折叠纸片使点D与点B重合,折痕为EF,BDEF,BODO,四边形ABCD是矩形,ADBCEDO=FBO在EDO和FBO中,EDO=FBO,DO=BO,EOD=FOB=90EDOFBO(ASA)OEOFEF,四边形ABCD是矩形,ABCD4,BCD90,设BCx,BD,BO,BOFC90,CBDOBF,BOFBCD,即:,解得:x8,BC8
12、,S矩形ABCDABBC4832,故选:A【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键7、D【解析】A选项,在OABOCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在OABOCD中,A和C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.8、B【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可【详解】抛物线开口向下,a0,对称轴为直线
13、x10,a、b异号,因此b0,与y轴交点为(0,3),因此c30,于是abc0,故结论是不正确的;由对称轴为直线x 1得2ab0,当x1时,yabc0,所以a2ac0,即3ac0,又a0,4ac0,故结论不正确;当y3时,x10,即过(0,3),抛物线的对称轴为直线x1,由对称性可得,抛物线过(2,3),因此方程ax2bxc3的有两个根是x10,x22;故正确;抛物线与x轴的一个交点(x1,0),且1x10,由对称轴为直线x1,可得另一个交点(x2,0),2x23,因此是正确的;根据图象可得当x0时,y随x增大而增大,因此是正确的;正确的结论有3个,故选:B【点睛】考查二次函数的图象和性质,掌
14、握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提9、B【分析】根据两直线平行,对应线段成比例即可解答【详解】DEBC,ADEABC,选项A,C,D成立,故选:B【点睛】本题考查平行线分线段成比例的知识,解题的关键是熟练掌握平行线分线段成比例定理10、D【分析】根据二次函数的顶点式的特征写出顶点坐标即可.【详解】因为y(x)22是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(,2)故选:D【点睛】此题考查的是求二次函数的顶点坐标,掌握二次函数的顶点式中的顶点坐标是解决此题的关键.二、填空题(每小题3分,共24分)11、(2,0), (2,0) 【分析】根
15、据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标【详解】解:如图,作A2Cx轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a)点A2在双曲线上,(2+a)a=,解得a=-1,或a=-1(舍去),OB2=OB1+2B1C=2+2-2=2,点B2的坐标为(2,0);作A3Dx轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b)点A3在双曲线y=(x0)上,(2+b)b=,解得b=-+,或b=-(舍去),OB3=OB2+2B2D=2-2+2=2,点B3的坐标为(2,0
16、);同理可得点B4的坐标为(2,0)即(4,0);以此类推,点Bn的坐标为(2,0),故答案为(2,0),(2,0)【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键12、100【分析】连结OC,OD,则PCO90,PDO90,可得CPDCOD180,根据OBOC,ODOA,可得BOC1802B,AOD1802A,则可得出与的关系式进而可求出的度数【详解】连结OC,OD,PC、PD均与圆相切,PCO90,PDO90,PCO+COD+ODP+CPD360,CPD+COD180,OBOC,ODOA,BOC1802B,AO
17、D1802A,COD+BOC+AOD180,180CPD+1802B+1802A180CPD100,故答案为:100【点睛】本题利用了切线的性质,圆周角定理,四边形的内角和为360度求解,解题的关键是熟练掌握切线的性质13、1【分析】由,得a3b,进而即可求解【详解】,a3b,;故答案为:1【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键14、【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值【详解】如图所示:连接AM四边形ABCD为正方形,AC= 点D与点M关于AE对称,AM=AD=1点
18、M在以A为圆心,以AD长为半径的圆上如图所示,当点A、M、C在一条直线上时,CM有最小值CM的最小值=AC-AM=-1,故答案为:-1【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M运动的轨迹是解题的关键15、0【解析】原式=0,故答案为0.16、【分析】与相交于点,因为平移,由此求出,从而求得【详解】解:由沿方向平移得到 ,【点睛】本题考查了平移的性质,以及相似三角形的性质.17、【分析】过A作ACOB于点C,由点的坐标求得OC、AC、OB,进而求BC,在RtABC中,由三角函数定义便可求得结果【详解】解:过A作ACOB于点C,如图,A(3,3),点B(7,0),A
19、COC3,OB7,BCOBOC4,tanABO,故答案为:【点睛】本题主要考查了解直角三角形的应用,平面直角坐标系,关键是构造直角三角形18、1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式ya(x0.8)22.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为ya(x0.8)22.4 将点A代入得,1.6a(00.8)22.4,解得a1.25该抛物线的函数关系为y1.25(x
20、0.8)22.4点D的横坐标为1.4代入得,y1.25(1.40.8)22.41.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用为数学建模题,借助二次函数解决实际问题三、解答题(共66分)19、 (1)点C的坐标为(2,3+2);(2)OA3;(3)OC的最大值为8,cosOAD【分析】(1)作CEy轴,先证CDEOAD30得CECD2,DE,再由OAD30知ODAD3,从而得出点C坐标;(2)先求出SDCM1,结合S四边形OMCD知SODM,SOAD9,设OAx、ODy,据此知x2+y231,xy9,得出x2+y22xy,即xy,
21、代入x2+y231求得x的值,从而得出答案;(3)由M为AD的中点,知OM3,CM5,由OCOM+CM8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ONAD,证CMDOMN得,据此求得MN,ON,ANAMMN,再由OA及cosOAD可得答案【详解】(1)如图1,过点C作CEy轴于点E,矩形ABCD中,CDAD,CDE+ADO90,又OAD+ADO90,CDEOAD30,在RtCED中,CECD2,DE2,在RtOAD中,OAD30,ODAD3,点C的坐标为(2,3+2);(2)M为AD的中点,DM3,SDCM1,又S四边形OMCD,SODM,SOAD9
22、,设OAx、ODy,则x2+y231,xy9,x2+y22xy,即xy,将xy代入x2+y231得x218,解得x3(负值舍去),OA3;(3)OC的最大值为8,如图2,M为AD的中点,OM3,CM5,OCOM+CM8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ONAD,垂足为N,CDMONM90,CMDOMN,CMDOMN,即,解得MN,ON,ANAMMN,在RtOAN中,OA,cosOAD【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点20、【分析】设该公司两个月营业额的月平均增长率为,根
23、据题目中的等量关系列出方程即可求解.【详解】设该公司两个月营业额的月平均增长率为,依题意,得:,解得:(不合题意,舍去).答:该公司两个月营业额的月平均增长率为.【点睛】本题考查的是增长率问题,比较典型,属于基础题型,关键是掌握增长率问题数量关系及其一般做法.21、(1)3,12;(2)D的坐标为【分析】(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AEx轴,垂足为E,过点D作DFx轴,垂足为F,根据勾股定理得到AB=,根据AAS可得ABEDCF,根据菱形的性质
24、和全等三角形的性质可得点D的坐标.【详解】(1)把点A(4,n)代入一次函数,可得;把点A(4,3)代入反比例函数,可得,解得k=12.(2)一次函数与轴相交于点B,由,解得,点B的坐标为(2,0) 如图,过点A作轴,垂足为E,过点D作轴,垂足为F,A(4,3),B(2,0) OE=4,AE=3,OB=2, BE=OEOB=42=2 在中,.四边形ABCD是菱形,.轴,轴,.在与中, ,AB=CD,CF=BE=2,DF=AE=3,. 点D的坐标为【点睛】本题考查了反比例函数与几何图形的综合,熟练掌握菱形的性质是解题的关键.22、此时快艇与岛屿C的距离是20nmile【分析】过点D作DEAB于点
25、E,过点C作CFAB于点F,由DECF,DCEF,CFE=90可得出四边形CDEF为矩形,设DE=x nmile,则AE=x (nmile),BE=x(nmile),由AB=6 nmile,可得出关于x的一元一次方程,解之即可得出x的值,再在RtCBF中,通过解直角三角形可求出BC的长【详解】解:过点D作DEAB于点E,过点C作CFAB于点F,如图所示则DECF,DEACFA90DCEF,四边形CDEF为平行四边形又CFE90,CDEF为矩形,CFDE根据题意,得:DAB45,DBE60,CBF45设DEx(nmile),在RtDEA中,tanDAB,AEx(nmile)在RtDEB中,tan
26、DBE,BEx(nmile)AB200.36(nmile),AEBEAB,xx6,解得:x9+3,CFDE(9+3)nmile在RtCBF中,sinCBF,BC20(nmile)答:此时快艇与岛屿C的距离是20nmile【点睛】本题考查了解直角三角形的应用方向角问题,通过解直角三角形求出BC的长是解题的关键23、(1)5,;(2);(3)点的坐标为或【分析】(1)根据正方形及点A、B的坐标得到边长,即可求得AD,得到点C的坐标;(2)将点C的坐标代入解析式即可;(3)设点到的距离为,根据的面积恰好等于正方形的面积求出h的值,再分两种情况求得点P的坐标.【详解】(1)点的坐标为,点的坐标为,AB
27、=2-(-3)=5,四边形为正方形,AD=AB=5,BC=AD=5,BCy轴,C.故答案为:5,;把代入反比例函数得解得反比例函数的解析式为;(3)设点到的距离为正方形的面积,的面积 ,解得.当点在第二象限时,此时,点的坐标为当点在第四象限时,此时,点的坐标为综上所述,点的坐标为或【点睛】此题考查正方形的性质,待定系数法求反比例函数的解析式,利用反比例函数求点坐标,(3)中确定点P时不要忽略反比例函数的另一个分支.24、x1=7,x2=2【分析】本题考查了一元二次方程的解法,由于-21=-72,且-7+2=-4,所以本题可用十字相乘法分解因式求解【详解】解:x24x21=1,(x7)(x+2)
28、=1,x7=1,x+2=1,x1=7,x2=225、 (1) 90;(2) 15【解析】试题分析:(1)由于ADF旋转一定角度后得到ABE,根据旋转的性质得到旋转中心为点A,DAB等于旋转角,于是得到旋转角为90;(2)根据旋转的性质得到AE=AF=4,AEB=F=60,则ABE=9060=30,解直角三角形得到AD=4,ABD=45,所以DE=44,然后利用EBD=ABDABE计算即可试题解析:(1)ADF旋转一定角度后得到ABE,旋转中心为点A,DAB等于旋转角,旋转角为90;(2)ADF以点A为旋转轴心,顺时针旋转90后得到ABE,AE=AF=4,AEB=F=60,ABE=9060=30
29、,四边形ABCD为正方形,AD=AB=4,ABD=45,DE=44,EBD=ABDABE=15考点:旋转的性质;正方形的性质26、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解试题解析:(1)A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,AB所扫过的面积=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算