收藏 分销(赏)

2022-2023学年江苏省江阴市长寿中学数学九年级第一学期期末考试试题含解析.doc

上传人:a199****6536 文档编号:2564847 上传时间:2024-06-01 格式:DOC 页数:25 大小:1.50MB
下载 相关 举报
2022-2023学年江苏省江阴市长寿中学数学九年级第一学期期末考试试题含解析.doc_第1页
第1页 / 共25页
2022-2023学年江苏省江阴市长寿中学数学九年级第一学期期末考试试题含解析.doc_第2页
第2页 / 共25页
2022-2023学年江苏省江阴市长寿中学数学九年级第一学期期末考试试题含解析.doc_第3页
第3页 / 共25页
2022-2023学年江苏省江阴市长寿中学数学九年级第一学期期末考试试题含解析.doc_第4页
第4页 / 共25页
2022-2023学年江苏省江阴市长寿中学数学九年级第一学期期末考试试题含解析.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1在RtABC中,C=90,AC=4,BC=3,则是A

2、BCD2如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D43下列函数中,当x0时,y随x的增大而增大的是( )ABCD4如图,下列几何体的俯视图是如图所示图形的是( )ABCD5已知一元二次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1x2),则下列判断正确的是( )A2x1x23Bx123x2C2x13x2Dx12x236如图,半径为3的O内有一点A,OA=,点P在O上,当OPA最大时,PA的长等于( )ABC3D27已知反比例函数,下列结论中不正确的是 ( )A图象必经过点(3,-2)B图象位于第二、四象限C若,则D在每一个象限内,

3、 随值的增大而增大8若反比例函数的图象在每一条曲线上都随的增大而增大,则的取值范围是()ABCD9已知关于的一元二次方程有两个不相等的实数根,则的取值范围是( )ABC且D且10如图,在四边形中,对角线、交于点有以下四个结论其中始终正确的有( ); ; A1个B2个C3个D4个11若分式的运算结果为,则在中添加的运算符号为( )ABC或D或12从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是( )A5B8C10D15二、填空题(每题4分,共24分)13若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_14四边形为的内接四边

4、形,为的直径,为延长线上一点,为的切线,若,则_.若,则_15有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与轴只有一个交点;乙:图象的对称轴是直线丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式_.16如图,在ABC中,A90,ABAC2,以AB为直径的圆交BC于点D,求图中阴影部分的面积为_17已知,关于原点对称,则_18如图,在矩形ABCD中,AB4,AD3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是_(结果保留).三、解答题(共78分)19(8分)如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)

5、判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长.20(8分)如图,ABCD是边长为1的正方形,在它的左側补一个矩形ABFE,使得新矩形CEFD与矩形ABEF相似,求BE的长21(8分)已知二次函数y = x2 -4x + 1(1)用配方法将y = x2 -4x + 1化成y = a(x - h)2 + k的形式;(2)在平面直角坐标系xOy中,画出该函数的图象(1)结合函数图象,直接写出y0时自变量x的取值范围 22(10分)如图,一次函数yk1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y的图象分别交于C,D两点,点C(2,4)

6、,点B是线段AC的中点(1)求一次函数yk1x+b与反比例函数y的解析式;(2)求COD的面积;(3)直接写出当x取什么值时,k1x+b23(10分)如图,抛物线y=ax2+bx经过点A(1,0)和点B(5,0),与y轴交于点C(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的A,求A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由24(10分)在ABC中,AB=AC,BAC=120,以CA为边在ACB的另一侧作ACM=ACB,点D为射线BC上任意一点,在射线CM上截取

7、CE=BD,连接AD、DE、AE(1)如图1,当点D落在线段BC的延长线上时,求ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值25(12分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角与满足+290,那么我们称这样的三角形为“类直角三角形”尝试运用(1)如图1,在RtABC中,C90,BC3,AB5,BD是ABC的平分线证明ABD是“类直角三角形”;试问在边AC上是否存在点E(异于点D),使得A

8、BE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由类比拓展(2)如图2,ABD内接于O,直径AB10,弦AD6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且CADAOD,当ABC是“类直角三角形”时,求AC的长26某市某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)?(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为

9、一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少(画出树状图或列表)参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意画出图形,由勾股定理求出AB的长,再根据三角函数的定义解答即可【详解】如图,在RtABC中,C=90,AC=4,BC=3,AB=5,sinA=,故选A.【点睛】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边2、B【分析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可

10、得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答3、B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A、,一次函数,k0,故y随着x增大而减小,错误;B、(x0),故当图象在对称轴右侧,y随着x的增大而增大,正确;C、,k=10,分别在一、三象限里,y随x的增大而减小,错误;D、(x0),故当图象在对称轴右侧,y随着x的增大而减小,错误故选B【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.4、A【分析】根据各选项几何体的俯视图即可判断【详解】解:

11、几何体的俯视图是两圆组成,只有圆台才符合要求故选:A【点睛】此题主要考查了几何体的三种视图,掌握定义是关键注意所有的看到的两圆形得出实际物体形状是解决问题的关键5、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可看做y

12、=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-10,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.6、B【解析】如图所示:OA、OP是定值,在OPA中,当OPA取最大值时,PA取最小值,PAOA时,PA取最小值;在直角三角形OPA中,OA=3,OP=3,PA=故选B.点睛:本题考查了垂径定理、圆周角定理、勾股定理的应用.解答此题的关键是找出“PAOA时,OPA最大”这一隐含条件. 当PAOA时,PA取最小值,OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可7、C

13、【分析】A将x=3代入反比例函数,根据所求得的y值即可判断;B根据反比例函数的k值的正负即可判断;C结合反比例函数的图象和性质即可判断;D根据反比例函数的k值的正负即可判断【详解】解:A当x=3时,故函数图象必经过点(3,-2),A选项正确;B 由反比例函数的系数k=-60,得到反比例函数图象位于第二、四象限,本选项正确;C 由反比例函数图象可知:当,则,故本选项不正确;D 由反比例函数的系数k=-60,得到反比例函数图象在各自象限y随x的增大而增大,故本选项正确故选:C【点睛】本题考查反比例函数的性质,反比例函数(k0),当k0时,图象位于第一、三象限,且在每一个象限,y随x的增大而减小;当

14、k0时,图象位于第二、四象限,且在每一个象限,y随x的增大而增大在做本题的时候可根据k值画出函数的大致图,结合图象进行分析8、B【分析】根据反比例函数的性质,可求k的取值范围【详解】解:反比例函数图象的每一条曲线上,y都随x的增大而增大,k20,k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0列式求解即可.【详解】由题意得k-10,且4-4(k-1)0,解得且.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0时,一元二次方程有两个不相等的实数根;当=0时,一元

15、二次方程有两个相等的实数根;当0,解得m5且m1,m的取值范围为m5且m1.故答案为:m5且m1.点睛:一元二次方程 方程有两个不相等的实数根时: 14、 【分析】连接OC,AC、过点A作AFCE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案【详解】解:连接OC,CE是O的切线,OCE=90,E=20,COD=70,OC=OD,ABC=180-55=125,连接AC,过点A做AFCE交CE于点F,设OC=OD=r,OE=8+r,在RtOEC中,由勾股定理可知:(8+r)2=r2+122,r=5,OCAFOCEAEF,故答案为:【点睛】本题考查圆的综合问题,涉及勾股定理,相似三角形

16、的性质与判定,切线的性质等知识,需要学生灵活运用所学知识15、(答案不唯一)【解析】利用二次函数的顶点式解决问题即可【详解】由题意抛物线的顶点坐标为(3,0),设抛物线的解析式为ya(x3)1开口向下,可取a=1,抛物线的解析式为y=(x3)1故答案为y=(x3)1(答案不唯一)【点睛】本题考查了抛物线与x轴的交点,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型16、1【分析】连接AD,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积【详解】解:连接AD,ABBC2,A90,CB45,BAD45,BDAD,BDAD,由BD,AD组成的

17、两个弓形面积相等,阴影部分的面积就等于ABD的面积,SABDADBD1故答案为:1【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键17、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可【详解】解:,关于原点对称,解得,故答案为:1【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键18、12【分析】用矩形的面积减去四分之一圆的面积即可求得阴影部分的面积.【详解】解:在矩形中,故答案为:.【点睛】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形

18、构成半圆是解答本题的关键三、解答题(共78分)19、(1),D;(2)是直角三角形,见解析;(3),.【分析】(1)直接将(1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别求出AB225,AC2OA2OC25,BC2OC2OB220,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,求出直线的解析式,可得M点坐标,然后易求此时ACM的周长【详解】解:(1)点在抛物线上,解得:.抛物线的解析式为,顶点的坐标为:;(2)是直角三角形,证明:当时,即,当时,解得:,是直角三角形;(3)如图所示:BC与对称轴交于点M,连接,根据轴对称性及两点之间线段

19、最短可知,此时的值最小,即周长最小,设直线解析式为:,则,解得:,故直线的解析式为:,抛物线对称轴为当时,最小周长是:.【点睛】此题主要考查了二次函数综合应用、利用轴对称求最短路线以及勾股定理的逆定理等知识,得出M点位置是解题关键20、【分析】设BE=x,BC=1,CE=x+1,然后根据相似多边形的性质列出比例式,计算即可【详解】解:设BE=x,则BC=1,CE=x+1,矩形CEFD与矩形ABEF相似,或,代入数据,或,解得:,(舍去),或不存在,BE的长为,故答案为【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边成比例是解题的关键21、 (1) ;(2)见解析;(1) 1 x 1

20、【分析】(1)运用配方法把一般式化为顶点式;(2)根据函数图象的画法画出二次函数图象即可;(1)运用数形结合思想解答即可【详解】(1) (2)在平面直角坐标系xOy中,画出该函数的图象如下:(1)y0即在x轴下方的点,由图形可以看出自变量x的取值范围为: 1 x 1【点睛】本题考查的是二次函数的三种形式、二次函数的性质,掌握配方法把一般式化为顶点式是解题的关键22、(1)y1x+2;y2;(2)SCOD6;(3)当0x2或x4时,k1x+b【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;

21、(2)联立方程求得D的坐标,然后根据即可求得COD的面积;(3)根据图象即可求得时,自变量x的取值范围【详解】(1)点C(2,4)在反比例函数y的图象上,;如图,作CEx轴于E,C(2,4),点B是线段AC的中点,B(0,2),B、C在的图象上, ,解得,一次函数为;(2)由 ,解得或,D(4,2),;(3)由图可得,当0x2或x4时,【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B点的坐标是解题的关键23、(1)y=+2x;(2);(3)存在最大值,此时P点坐标(,)【分析】(1)将A、B两点坐标分别代入抛物线解析

22、式,可求得待定系数a和b,即可确定抛物线解析式;(2)因为圆的切线垂直于过切点的半径,所以过A作ADBC于点D,则AD为A的半径,由条件可证明ABDCBO,根据抛物线解析式求出C点坐标,根据勾股定理求出BC的长,再求出AB的长,利用相似三角形的性质即两个三角形相似,对应线段成比例,可求得AD的长,即为A的半径;(3)先由B,C点坐标求出直线BC解析式,然后过P作PQy轴,交直线BC于点Q,交x轴于点E,因为P在抛物线上,P,Q点横坐标相同,所以可设出P、Q点的坐标,并把PQ的长度表示出来,进而表示出PQC和PQB的面积,两者相加就是PBC的面积,再利用二次函数的性质讨论其最大值,容易求得P点坐

23、标【详解】解:(1)抛物线y=ax2+bx经过点A(1,0)和点B(5,0),把A、B两点坐标代入可得:,解得:,抛物线解析式为y=+2x;(2)过A作ADBC于点D,如图1:因为圆的切线垂直于过切点的半径,所以AD为A的半径,由(1)可知C(0,),且A(1,0),B(5,0),OB=5,AB=OBOA=4,OC=,在RtOBC中,由勾股定理可得:BC=,ADB=BOC=90,ABD=CBO,ABDCBO,即,解得AD=,即A的半径为;(3)C(0,),设直线BC解析式为y=kx,把B点坐标(5,0)代入可求得k=,直线BC的解析式为y=x,过P作PQy轴,交直线BC于点Q,交x轴于点E,如

24、图2,因为P在抛物线上,Q在直线BC上,P,Q两点横坐标相同,所以设P(x,+2x),则Q(x,x),PQ=(+2x)(x)=+x=+,SPBC=SPCQ+SPBQ=PQOE+PQBE=PQ(OE+BE)=PQOB=PQ=+=,0,当x=时,SPBC有最大值,把x=代入+2x,求出P点纵坐标为,PBC的面积存在最大值,此时P点坐标(,)【点睛】本题考查1二次函数的综合应用;2切线的性质;3相似三角形的判定和性质;4用待定系数法确定解析式,综合性较强,利用数形结合思想解题是关键24、(1)ADE=30;(2)ADE=30,理由见解析;(3)【分析】(1)利用SAS定理证明ABDACE,根据全等三

25、角形的性质得到AD=AE,CAE=BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明ADFACD,根据相似三角形的性质得到,求出AD的最小值,得到AF的最小值,求出CF的最大值【详解】解:(1)ADE=30理由如下:AB=AC,BAC=120,ABC=ACB=30,ACM=ACB,ACM=ABC,在ABD和ACE中,ABDACE,AD=AE,CAE=BAD,DAE=BAC=120,ADE=30;(2)(1)中的结论成立,证明:BAC=120,AB=AC,B=ACB=30ACM=ACB,B=ACM=30在ABD和ACE中,ABDACE,AD=AE

26、,BAD=CAE,CAE+DAC=BAD+DAC=BAC=120即DAE=120,AD=AE,ADE=AED=30;(3)AB=AC,AB=6,AC=6,ADE=ACB=30且DAF=CAD,ADFACD,AD2=AFAC,AD2=6AF,AF=,当AD最短时,AF最短、CF最长,易得当ADBC时,AF最短、CF最长,此时AD=AB=3,AF最短=,CF最长=ACAF最短=6=【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定与性质等知识,解题的关键是正确寻找全等三角形、相似三角形解决问题,属于中考常考题型25、(1)证明见解析;CE;(2)当AB

27、C是“类直角三角形”时,AC的长为或【分析】(1)证明A+2ABD=90即可解决问题如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”,证明ABCBEC,可得,由此构建方程即可解决问题(2)分两种情形:如图2中,当ABC+2C=90时,作点D关于直线AB的对称点F,连接FA,FB则点F在O上,且DBF=DOA如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,可证C+2ABC=90,利用相似三角形的性质构建方程即可解决问题【详解】(1)证明:如图1中,BD是ABC的角平分线,ABC2ABD,C90,A+ABC90,A+2ABD90,AB

28、D为“类直角三角形”;如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”,在RtABC中,AB5,BC3,AC,AEBC+EBC90,ABE+2A90,ABE+A+CBE90,ACBE,ABCBEC,CE,(2)AB是直径,ADB90,AD6,AB10,BD,如图2中,当ABC+2C90时,作点D关于直线AB的对称点F,连接FA,FB,则点F在O上,且DBFDOA,DBF+DAF180,且CADAOD,CAD+DAF180,C,A,F共线,C+ABC+ABF90,CABF,FABFBC,即 ,AC如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA

29、平分FBC,C+2ABC90,CADCBF,CC,DACFBC,即,CD(AC+6),在RtADC中, (ac+6)2+62AC2,AC或6(舍弃),综上所述,当ABC是“类直角三角形”时,AC的长为 或【点睛】本题主要考查圆综合题,考查了相似三角形的判定和性质,“类直角三角形”的定义等知识, 解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.26、;【分析】根据概率的计算法则得出概率,首先根据题意列出表格,然后求出概率【详解】(1)P(恰好是A,a)的概率是=(2)依题意列表如下:共有9种情形,每种发生可能性相等,其中恰好是两对家庭成员有(AB,ab),( AC,ac),( BC,bc)3种,故恰好是两对家庭成员的概率是P=考点:概率的计算

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服