1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,抛物线yax2bxc(a0)的对称轴为直线x1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2bxc0的两个根是x11,x23;3ac0;当y0时,x的取值范围是1x3;当x0时,y随x增大而增大其中结论正确的个数是( )A4个B3个C2个D1个2下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是( )ABCD3如图,在ABC中,A=90,sinB=,点D在边AB上,若AD=AC,则tanBCD的值为( ) ABCD4若反比例函数y=(k0)的图象经过点P(2,3),则k的值为()A
3、2B12C6D65如图中几何体的主视图是()ABCD6用配方法解方程,经过配方,得到 ( )ABCD7抛物线y=ax2+bx+c的对称轴为直线x=1,部分图象如图所示,下列判断中:abc1;b24ac1;9a3b+c=1;若点(1.5,y1),(2,y2)均在抛物线上,则y1y2;5a2b+c1其中正确的个数有()A2B3C4D58下列函数关系式中,是的反比例函数的是( )ABCD9如图,在中,则等于( )ABCD10抛物线的顶点坐标是( )A(3,5)B(-3,-5)C(-3,5)D(3,-5)二、填空题(每小题3分,共24分)11如图,在等腰中,点是以为直径的圆与的交点,若,则图中阴影部分
4、的面积为_12九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_13如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE50m,则AB的长是_m14若关于x的一元二次方程(a1)x22x+2=0有实数根,则整数a的最大值为_15如图,已知等边,顶点在双曲线上,点的坐标为(2,0)过作,交双曲线于点,过作交轴于,得到第二个等边过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,则点的坐标为_,的坐标为_16已知线段a、b、c,其中c是a、b的比例中项,若a2
5、cm,b8cm,则线段c_cm17分式方程的解为_.18有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_.三、解答题(共66分)19(10分)某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;(2)求出图中表示科普类书籍的扇形圆心角度数;(3)本次活动师生共捐书本,请估计有多少本文学类书籍?20(6分)某校初二年级模拟开展“中
6、国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率21(6分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示)(1)若要建的矩形养
7、鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?22(8分)已知抛物线.(1)若,求该抛物线与轴的交点坐标;(2)若,且抛物线在区间上的最小值是-3,求的值.23(8分)已知四边形为的内接四边形,直径与对角线相交于点,作于,与过点的直线相交于点,.(1)求证:为的切线;(2)若平分,求证:;(3)在(2)的条件下,为的中点,连接,若,的半径为,求的长.24(8分)如图,AB是O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CFEF(1)求证:FC是O的切线;(2)若CF
8、5,求O半径的长25(10分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题 (1)m= %,这次共抽取了 名学生进行调查;并补全条形图;(2)请你估计该校约有 名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?26(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场
9、进行试销据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量参考答案一、选择题(每小题3分,共30分)1、B【详解】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为(3,0),方程ax2+bx+c=
10、0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,y=0,即ab+c=0,a+2a+c=0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定
11、抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点2、C【分析】由平移的性质,分别进行判断,即可得到答案【详解】解:由平移的性质可知,C选项的图案是通过平移得到的;A、B、D中的图案不是平移得到的;故选:C【点睛】本题考查了平移的性质,解题的关键是掌握图案的平移进行解题3、C【分析】作DEBC于E,在CDE中根据已知条件可求得DE,CE的长,从而求得tanBCD.【详解】解:作DEBC于E.A=90,sinB=,设AC=3a=AD,则AB=4a
12、,BC=5a,BD=AB-AD=a.DE= BDsinB=a,根据勾股定理,得BE=a,CE=BC-BE=a,tanBCD=故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键4、D【分析】直接根据反比例函数图象上点的坐标特征求解【详解】反比例函数y=(k0)的图象经过点(-2,3),k=-23=-1故选:D【点睛】此题考查了反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k5、D【解析】找到从正面看所得到的图形即可,注意所
13、有的看到的棱都应表现在主视图中【详解】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选D【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图6、D【分析】通过配方法的步骤计算即可;【详解】,故答案选D【点睛】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键7、B【分析】分析:根据二次函数的性质一一判断即可【详解】详解:抛物线对称轴x=-1,经过(1,1),-=-1,a+b+c=1,b=2a,c=-3a,a1,b1,c1,abc1,故错误,抛物线对称轴x=-1,经过(1,1),可知抛物线与x轴还有另外一个交点(-3,1)抛物线与x轴有
14、两个交点,b2-4ac1,故正确,抛物线与x轴交于(-3,1),9a-3b+c=1,故正确,点(-1.5,y1),(-2,y2)均在抛物线上, (-1.5,y1)关于对称轴的对称点为(-1.5,y1)(-1.5,y1),(-2,y2)均在抛物线上,且在对称轴左侧,-1.5-2,则y1y2;故错误,5a-2b+c=5a-4a-3a=-2a1,故正确,故选B【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型8、C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选
15、择C.【点睛】本题考查的是反比例函数的定义:形如的式子,其中k0.9、D【分析】直接根据正弦的定义解答即可【详解】在ACB中,C=90,故选:D【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做A的正弦是解题的关键10、C【解析】由题意根据二次函数y=a(x-h)2+k(a0)的顶点坐标是(h,k),求出顶点坐标即可【详解】解:;顶点坐标为:(-3,5)故选:C【点睛】本题考查二次函数的性质和二次函数的顶点式熟悉二次函数的顶点式方程y=a(x-h)2+k中的h、k所表示的意义是解决问题的关键二、填空题(每小题3分,共24分)11、【分析】取AB的中点O,连接OD,根据圆
16、周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解【详解】取AB的中点O,连接OD,在等腰中,阴影部分的面积扇形BOD的面积,故答案为:【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键12、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.13、1【分析】先判断出DE是ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解【详解】点D,E分别是AC,BC的
17、中点,DE是ABC的中位线,AB=2DE=250=1米故答案为1【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键14、1【解析】试题分析:根据一元二次方程的根的判别式,直接可求=4-8a+80,解得a,因此a的最大整数解为1.故答案为1.点睛:此题主要考查了一元二次方程根的判别式=b2-4ac,解题关键是确定a、b、c的值,再求出判别式的结果.可根据下面的理由:(1)当0时,方程有两个不相等的实数根;(2)当=0时,方程有两个相等的实数根;(3)当0时,方程没有实数根15、(2,0), (2,0) 【分析】根据等边三角形的性质以及反比例函数图象上
18、点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标【详解】解:如图,作A2Cx轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a)点A2在双曲线上,(2+a)a=,解得a=-1,或a=-1(舍去),OB2=OB1+2B1C=2+2-2=2,点B2的坐标为(2,0);作A3Dx轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b)点A3在双曲线y=(x0)上,(2+b)b=,解得b=-+,或b=-(舍去),OB3=OB2+2B2D=2-2+2=2,点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即
19、(4,0);以此类推,点Bn的坐标为(2,0),故答案为(2,0),(2,0)【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键16、4【分析】根据比例中项的定义,列出比例式即可求解【详解】线段c是a、b的比例中项,线段a2cm,b8cm,c2ab2816,c14,c24(舍去),线段c4cm故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项这里注意线段不能是负数17、;【解析】方程两边都乘以(x+2)(x-2)得到x(x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分
20、式方程的解【详解】解:去分母得x(x+2)-2=(x+2)(x-2),解得x=-1,检验:当x=-1时,(x+2)(x-2)0,所以原方程的解为x=-1故答案为x=-1【点睛】本题考查解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解18、小林【详解】观察图形可知,小林的成绩波动比较大,故小林是新手故答案是:小林三、解答题(共66分)19、(1)本次抽样调查的书籍有本;作图见解析(2)(3)估计有本文学类书籍【分析】(1)根据艺术类图书8本占20%解答;(2)根据科普类书籍占总数的,即可解答;(3)利用样本估计总体【详解】
21、(1)820=40(本),40-8-14-12=6(本),答:本次抽样调查的书籍有40本补图如图所示:(2),答:图1中表示科普类书籍的扇形圆心角度数为108(3)(本),答:估计有700本文学类书籍【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,两图结合是解题的关键20、(1)72,图详见解析;(2)【分析】(1)先画出条形统计图,再求出圆心角即可;(2)先画出树状图,再求出概率即可【详解】(1)条形统计图为;扇形统计图中“优秀”所对应的扇形的圆心角是(115%25%40%)36072,故答案为:72;(2)画树状图:由树状图可知:所有等可能的结果有6种,其中符合条件的有2种,所有
22、P(甲、丙),即选中的两名同学恰好是甲、丙的概率是【点睛】本题考查了树状图、条形统计图和扇形统计图等知识点,能画出条形图和树状图是解此题的关键21、(1)鸡场的宽(BC)为6m,则长(AB)为1m;(2)不能【分析】(1)可设鸡场的宽(BC)为xm,则长(AB)为(333x)m,由矩形的面积可列出关于x的一元二次方程,求出符合题意的解即可;(2)将(1)中矩形的面积换成100,求方程的解即可,若有符合题意的解,则能实现,反之则不能.【详解】(1)设鸡场的宽(BC)为xm,则长(AB)为(333x)m,根据题意,得解得,(不符合题意,舍去)333x=3336=1答:鸡场的宽(BC)为6m,则长(
23、AB)为1m(2)设鸡场的宽(BC)为xm,则长(AB)为(333x)m,根据题意,得,整理得 所以该方程无解,这一想法不能实现.【点睛】本题考查了一元二次方程的应用,正确理解题意列出方程是解题的关键.22、(1)(-1,0),;(2)b=7或【分析】(1)将,代入解析式,然后令y=0,求x的值,使问题得解;(2)求得函数的对称轴是x=-b,然后分成-b-2,-2-b2和-b2三种情况进行讨论,然后根据最小值是-3,即可解方程求解【详解】解:(1)当,时当y=0时,解得: 该抛物线与x轴的交点为(-1,0), (2)当,时,抛物线的对称轴是x=-b当-b-2,即b2时,在区间上,y随x增大而增
24、大当x=-2时,y最小为解得:b=7;当-2-b2时,即-2b2,在区间上当x=-b时,y最小为 解得:b=(不合题意)或b=(不合题意)当-b2,即b-2时,在区间上,y随x增大而减小当x=2时,y最小为解得:b=综上,b=7或【点睛】本题考查了二次函数与x轴的交点以及函数的最值,注意讨论对称轴的位置是本题的关键23、(1)证明见解析(2)证明见解析(3)【分析】(1)根据直径所对的圆周角为90,得到ADC=90,根据直角三角形两锐角互余得到DAC+DCA=90,再根据同弧或等弧所对的圆周角相等,可得到FAD+DAC=90,即可得出结论;(2)连接OD根据圆周角定理和角平分线定义可得DOA=
25、DOC,即可得出结论;(3)连接OD交CF于M,作EPAD于P可求出AD=4,AFOM根据三角形中位线定理得出OM=AF证明ODEOCM,得到OE=OM设OM=m,用m表示出OE,AE,AP,DP通过证明EANDPE,根据相似三角形对应边成比例,求出m的值,从而求得AN,AE的值在RtNAE中,由勾股定理即可得出结论【详解】(1)AC为O的直径,ADC=90,DAC+DCA=90,ABD=DCAFAD=ABD,FAD=DCA,FAD+DAC=90,CAAF,AF为O的切线(2)连接OD,ABD=AOD,DBC=DOCBD平分ABC,ABD=DBC,DOA=DOC,DA=DC(3)连接OD交CF
26、于M,作EPAD于PAC为O的直径,ADC=90DA=DC,DOAC,FAC=DOC=90,AD=DC=4,DAC=DCA=45,AFOMAO=OC,OM=AFODE+DEO=90,OCM+DEO=90,ODE=OCMDOE=COM,OD=OC,ODEOCM,OE=OM设OM=m,OE=m,AED+AEN=135,AED+ADE=135,AEN=ADEEAN=DPE,EANDPE,由勾股定理得:【点睛】本题是圆的综合题考查了圆周角定理,切线的判定,相似三角形的判定与性质,三角形的中位线定理等知识用含m的代数式表示出相关线段的长是解答本题的关键24、(1)证明见解析;(2)AO.【分析】(1)连
27、接OD,利用点D是半圆的中点得出AOD与BOD是直角,之后通过等量代换进一步得出FCE+OCD=OED+ODC=90从而证明结论即可;(2)通过得出,再证明ACFCBF从而得出AF10,之后进一步求解即可.【详解】证明:连接OD,点D是半圆的中点,AOD=BOD=90.ODC+OED=90.OD=OC,ODC=OCD.又CF=EF,FCE=FEC.FEC=OED,FCE=OED.FCE+OCD=OED+ODC=90.即FCOC.FC是O的切线.(2)tanA,在RtABC中,. ACBOCF90,ACOBCFA. ACFCBF,.AF10.CF2BFAF.BF. AO.【点睛】本题主要考查了圆
28、的切线证明与综合运用,熟练掌握相关概念是解题关键.25、(1)20;50;(2)360;(3).【解析】试题分析:(1)首先由条形图与扇形图可求得m=100%-14%-8%-24%-34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数48%=50;(2)由150024%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案试题解析:(1)m=100%-14%-8%-24%-34%=20%;跳绳的人数有4人,占的百分比为8%,48%=50;如图所示;5020%=10(人)(2
29、)150024%=360;(3)列表如下:男1男2男3女男1男2,男1男3,男1女,男1男2男1,男2男3,男2女,男2男3男1,男3男2,男3女,男3女男1,女男2,女男3,女所有可能出现的结果共12种情况,并且每种情况出现的可能性相等其中一男一女的情况有6种抽到一男一女的概率P=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图26、;当时,; 销售单价应该控制在82元至90元之间【分析】(1)根据每天销售利润=每件利润每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得: ; ,抛物线开口向下,对称轴是直线,当时,;当时,解得,当时,每天的销售利润不低于4000元由每天的总成本不超过7000元,得,解得,销售单价应该控制在82元至90元之间【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.