1、导数的概念(第1课时)一、教学目标: 1了解曲线的切线的概念 2在了解瞬时速度的基础上,抽象出变化率的概念3掌握切线的斜率、瞬时速度,它们都是一种特殊的极限,为学习导数的定义奠定基础二、教学重点:切线的概念和瞬时速度的概念 教学难点:在了解曲线的切线和瞬时速度的基础上抽象出变化率的概念三、教学用具:多媒体四、教学过程:1曲线的切线如图,设曲线C是函数的图像,点是曲线C上一点,点是曲线C上与点P邻近的任一点作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT我们就把极限位置上的直线PT,叫做曲线C在点P处的切线问:怎样确定曲线C在点P处的切线呢?因为P是给定的,根
2、据解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了设割线PQ的倾斜角为,切线PT的倾斜角为,既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率,即例题 求曲线在点P(1,2)处的切线的斜率k解:,即2瞬时速度我们知道,物体作直线运动时,它的运动规律可用函数描述下面以自由落体运动为例进行分析已知(1)计算t从3秒到3.1秒、3.01秒、3.001秒、3.0001秒各段内平均速度(2)求秒时的瞬时速度解:(1)指时间改变量指位置改变量其余各段时间内的平均速度,事先刻在光碟上,待学生回答完第一时间内的平均速度后,即用多媒体出示,让学生思考在各段时间内平均速度
3、的变化情况(2)从(1)可见某段时间内的平均速度随变化而变化,越小,越接近于一个定值,由极限定义可知,这个值就是时,的极限 (米/秒)问:非匀速直线运动的瞬时速度是怎样定义的?(当时,平均速度的极限)教师引导,学生进行归纳:求非匀速直线运动在时刻的瞬时速度的方法如下:非匀速直线运动的规律时间改变量,位置改变量平均速度,瞬时速度一般地,如果物体的运动规律是,物体在时刻t的瞬时速度v,就是物体在t到这段时间内,当时,平均速度的极限,即例题 若一物体运动方程如下:求此物体在和时的瞬时速度解:当时, 当时,所以,物体在和时的瞬时速度分别是6和03课堂练习(学生练习后教师再讲评)(1)求在处的切线的斜率解: (2)教科书第111页练习第1、2题4课堂小结(1)曲线的切线(2)瞬时速度(3)求切线的斜率、瞬时速度的步骤五、布置作业1求下列曲线在指定点处的切线斜率(1)处, (2)处2已知某质点按规律(米)作直线运动求:(1)该质点在运动前3秒内的平均速度;(2)质点在2秒到3秒内的平均速度;(3)质点在3秒时的瞬时速度解:1(1),(2);2(1)8米/秒,(2)12米/秒,(3)14米/秒