收藏 分销(赏)

解三角形1.1正弦定理和余弦定理知识点总结.doc

上传人:a199****6536 文档编号:2553708 上传时间:2024-05-31 格式:DOC 页数:4 大小:105.51KB
下载 相关 举报
解三角形1.1正弦定理和余弦定理知识点总结.doc_第1页
第1页 / 共4页
解三角形1.1正弦定理和余弦定理知识点总结.doc_第2页
第2页 / 共4页
解三角形1.1正弦定理和余弦定理知识点总结.doc_第3页
第3页 / 共4页
解三角形1.1正弦定理和余弦定理知识点总结.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、小小亲清辅导班第一章 解三角形1.1正弦定理和余弦定理一、知识必备:1直角三角形中各元素间的关系:在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。二、正弦定理(一)知识与工具:正弦定理:在ABC中, 。(外接圆圆半径)在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180 (2)两边之和大于第三边,两边之差小

2、于第三边(3)面积公式:S=absinC=2R2sinAsinBsinC (其中为三角形内切圆半径),(海伦公式)(4)三角函数的恒等变形。(5) sin(A+B)=sinC,cos(A+B)=-cosC ,sin=cos,cos=sin(10)(二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。题型3 三角形解的个数的讨论已知a,b和A,求B时的解的情况: 如果sinAsinB,则B有唯一解;如果sinAsinB1,则B无解.方法一:画图看方法二:通过正弦定理解三角形,利用三角

3、形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。三、余弦定理(一)知识与工具:a2=b2+c22bccosA cosA= b2=a2+c22accosB cosB=c2=a2+b22abcosC cosC=注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。在变形中,注意三角形中其他条件的应用:(1)三内角和为180;(2)两边之和大于第三边,两边之差小于第三边。(3)面积公式:S=absinC=2R2sinAsinBsinC(4)三角函数的恒等变形。(二)题型使用余弦定理解三角形共有三种现象的题型题型1 利用余弦定理公式的原型解三角形题

4、型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。题型3 判断三角形的形状结论:根据余弦定理,当a2+b2c2、b2+c2a2、c2+a2b2中有一个关系式成立时,该三角形为钝角三角形,而当a2+b2c2、b2+c2a2,c2+a2b2中有一种关系式成立时,并不能得出该三角形为锐角三角形的结论。判断三角形形状的方法:(1)将已知式所有的边和角转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状。(2)将已知式所有的边和角转化为内角三角函数间的关系,通过三角恒等变形,得出内角的

5、关系,从而判断出三角形的形状,这时要注意使用A+B+C=这个结论。在两种解法的等式变形中,一般两边不要约去公因式,应移项提取出公因式,以免漏解四、思维总结1解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C = 求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = ,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = 求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C

6、= ,求角C。2三角形内切圆的半径:,特别地,;3三角学中的射影定理:在ABC 中,4两内角与其正弦值:在ABC 中,5解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。五、判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在中,由余弦定理可知:(注意:)(3) 若,则A=B或.本章浙江高考理科试卷分析:2013年选择一道(定比分点与向量) 填空一道(模的最大值) 2012年选择一道(向量的数量积) 解答一道(正余弦求值与面积) 2011年填空一道(面积与取值范围) 解答一道(求值与取值范围) 2010年填空一道(平面向量取值范围) 解答一道(求值与边)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服