资源描述
2022-2023学年九上数学期末模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.已知与各边相切于点,,则的半径( )
A. B. C. D.
2.下列成语所描述的事件是必然事件的是( )
A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长
3.下列说法中,正确的是( )
A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1
C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥
4.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为( )
A.S1=S2 B.S1<S2 C.S1=S2 D.S1>S2
5.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )
A. B.
C. D.
6.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为( )
A. B. C. D.
7.已知二次函数y=a(x+1)2+b(a≠0)有最大值1,则a、b的大小关系为( )
A.a>b B.a<b C.a=b D.不能确定
8.抛物线y=ax2+bx+c(a≠0)形状如图,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0;④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根.正确的有( )
A.4个 B.3个 C.2个 D.1个
9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
10.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为( )
A.0 B.1 C.2 D.3
二、填空题(每小题3分,共24分)
11.已知二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1),则y1_____y1.(填“>”“<”或“=”)
12.学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是___________.
13.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
14.地物线的部分图象如图所示,则当时,的取值范围是______.
15.关于的方程的一个根为2,则______.
16.二次函数图象的顶点坐标为________.
17.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为__________.
18.计算:cos45°=______.
三、解答题(共66分)
19.(10分)(1)已知关于x的一元二次方程x2+(a+3)x+a+1=1.求证:无论a取何值,原方程总有两个不相等的实数根:
(2)已知:二次函数y=ax2+bx+c(a≠1)中的x和y满足下表:
x
…
﹣1
1
1
2
3
…
y
…
3
1
﹣1
1
m
…
①观察上表可求得m的值为 ;
②试求出这个二次函数的解析式.
20.(6分)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).
21.(6分)如图,直线与双曲线在第一象限内交于两点,已知.
求的值及直线的解析式;
根据函数图象,直接写出不等式的解集.
22.(8分)先化简,再选择一个恰当的数代入后求值.
23.(8分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m
(1)若围成的面积为72m2,球矩形的长与宽;
(2)菜园的面积能否为120m2,为什么?
24.(8分)化简求值 :,其中
25.(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:
(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;
(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
26.(10分)如图,把Rt△ABC绕点A.逆时针旋转40°,得到在Rt△ABʹCʹ,点Cʹ恰好落在边AB上,连接BBʹ,求∠BBʹCʹ的度数.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据内切圆的性质,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于点G,然后求出BG的长度,利用面积相等即可求出内切圆的半径.
【详解】解:如图,连接OA、OB、OC、OD、OE、OF,作BG⊥AC于点G,
∵是的内切圆,
∴,AE=AD=5,BD=BF=2,CE=CF=3,
∴AC=8,AB=7,BC=5,
在Rt△BCG和Rt△ABG中,设CG=x,则AG=,由勾股定理,得:
,
∴,
解得:,
∴,
∴,
∵,
∴;
故选:C.
【点睛】
本题考查了三角形内切圆的性质,利用勾股定理解直角三角形,以及利用面积法求线段的长度,解题的关键是掌握三角形内切圆的性质,熟练运用三角形面积相等进行解题.
2、A
【解析】必然事件就是一定会发生的事件,依据定义即可解决
【详解】A.水涨船高是必然事件,故正确;
B. 水中捞月,是不可能事件,故错误;
C.一箭双雕是随机事件,故错误
D.拔苗助长是不可能事件,故错误
故选:A
【点睛】
此题考查随机事件,难度不大
3、D
【分析】根据平面向量的性质一一判断即可.
【详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.
B、如果是单位向量,那么=1,错误.应该是=1.
C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.
D、已知非零向量,如果向量=﹣5,那么∥,正确.
故选:D.
【点睛】
本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.
4、D
【分析】由正六边形的长得到的长,根据扇形面积公式=×弧长×半径,可得结果.
【详解】由题意:的长度==24,
∴S2=×弧长×半径=×24×6=72,
∵正六边形ABCDEF的边长为6,
∴为等边三角形,∠ODE=60°,OD=DE=6,
过O作OG⊥DE于G,如图:
∴,
∴,
∴S1>S2,
故选:D.
【点睛】
本题考查了正多边形和圆、正六边形的性质、扇形面积公式;熟练掌握正六边形的性质,求出弧长是解决问题的关键.
5、C
【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,通过平行可证明∽,∽,∽,然后利用相似的性质及三等分点可求出、、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可.
【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:
∵矩形ABCD的面积为1,
∴,
∵B、D为线段EF的三等分点,
∴,,,
∵,
∴,,
∴∽,
∴,即,
∴,
∵,
∴,,
∴∽,
∴,即,
∴,
∵,
∴,,
∴∽,
∴即,
∴,
∴,
∵四边形ABCD是矩形,
∴,
∵,,
∴,,
又∵,
∴四边形BGOH是矩形,
根据反比例函数的比例系数的几何意义可知:,
∴,
∴
又∵,即,
∴,
∴直线EF的解析式为,
令,得,
令,即,解得,
∴,,
∵F点在轴的上方,
∴,
∴,,
∵,即,
∴.
故选:C.
【点睛】
本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧.
6、B
【解析】在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.
【详解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,
∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,
∴∠CAD=∠CAB+∠BAD=75°,
在Rt△ACD中,CD=CB+BD=k+2k,
则tan75°=tan∠CAD===2+,
故选B
【点睛】
本题考查了解直角三角形,熟练掌握三角函数是解题的关键.
7、B
【解析】根据二次函数的性质得到a<0,b=1,然后对各选项进行判断.
【详解】∵二次函数y=a(x-1)2+b(a≠0)有最大值1,
∴a<0,b=1.
∴a<b,
故选B.
【点睛】
本题考查了二次函数的最值:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值
8、B
【分析】根据抛物线的开口方向、对称轴、顶点坐标和增减性,以及二次函数与一元二次方程的关系逐个进行判断即可.
【详解】解:由抛物线开口向上,可知a>1,对称轴偏在y轴的右侧,a、b异号,b<1,因此①不符合题意;
由对称轴为x=1,抛物线与x轴的一个交点为(3,1),可知与x轴另一个交点为(﹣1,1),代入得a﹣b+c=1,因此②符合题意;
由图象可知,当x<﹣1或x>3时,图象位于x轴的上方,即y>1.因此③符合题意;
抛物线与y=﹣1一定有两个交点,即一元二次方程ax2+bx+c+1=1(a≠1)有两个不相等的实数根,因此④符合题意;
综上,正确的有3个,
故选:B.
【点睛】
本题考查了二次函数的性质和二次函数同一元二次方程的关系,解决本题的关键是正确理解题意,熟练掌握二次函数的性质.
9、C
【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
10、A
【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,
所以k-1<0,k<1.
故选A.
考点:反比例函数的性质.
二、填空题(每小题3分,共24分)
11、>
【分析】根据二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1)和二次函数的性质可以判断y1 和y1的大小关系.
【详解】解:∵二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,
∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,
∵该函数经过点(﹣1,y1),(1,y1),|﹣1﹣1|=1,|1﹣1|=1,
∴y1>y1,
故答案为:>.
【点睛】
本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.
12、1
【分析】根据中位数的概念求解即可.
【详解】这组数据按照从小到大的顺序排列为:86,87,1,89,89,
则这5个数的中位数为:1.
故答案为:1.
【点睛】
本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
13、1
【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如图延长AD交⊙D于P′,此时AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=1,
∴a的最大值为1.
故答案为1.
【点睛】
圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
14、或
【分析】根据二次函数的对称性即可得出二次函数与x轴的另一个交点为(3,0),当时,图像位于x轴的上方,故可以得出x的取值范围.
【详解】解:由图像可得:对称轴为x=1,二次函数与x轴的一个交点为(-1,0)
则根据对称性可得另一个交点为(3,0)
∴当或时,
故答案为:或
【点睛】
本题主要考查的是二次函数的对称性,二次函数的图像是关于对称轴对称的,掌握这个知识点是解题的关键.
15、1
【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.
【详解】把x=2代入方程得:4k−2−2=0,解得k=1
故答案为:1.
【点睛】
本题主要考查了方程的根的定义,是一个基础的题目.
16、
【解析】二次函数(a≠0)的顶点坐标是(h,k).
【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).
故答案为:(1,2).
【点睛】
本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义.
17、120
【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.根据面积关系可得.
【详解】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.
由题意得S底面面积=πr2,
l底面周长=2πr,
S扇形=3S底面面积=3πr2,
l扇形弧长=l底面周长=2πr.
由S扇形=l扇形弧长×R=3πr2=×2πr×R,
故R=3r.
由l扇形弧长=得:
2πr=
解得n=120°.
故答案为:120°.
【点睛】
考核知识点:圆锥侧面积问题.熟记弧长和扇形面积公式是关键.
18、
【分析】根据特殊角的三角函数值计算即可.
【详解】解:根据特殊角的三角函数值可知:cos45°=,
故答案为.
【点睛】
本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.
三、解答题(共66分)
19、(2)证明见解析;(2)①3;②y=(x﹣2)2﹣2.
【分析】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,即可求解;
(2)①函数的对称轴为:x=2,根据函数的对称轴知,m=3,即可求解;
②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,将(2,2)代入上式并解得:a=2,即可求解.
【详解】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,
故无论a取何值,原方程总有两个不相等的实数根;
(2)①函数的对称轴为:x=2,
根据函数的对称性可得,m=3,
故答案为:3;
②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,
将(2,2)代入上式得:2=a(2﹣2)2﹣2,解得:a=2,
故抛物线的表达式为:y=(x﹣2)2﹣2.
【点睛】
此题考查一元二次方程根的判别式,二次函数的性质,待定系数法求函数的解析式,此题中能读懂表格中的数值变化是解题的关键.
20、此车超速,理由见解析.
【分析】解直角三角形得到AB=OA-OB=73米,求得此车的速度≈86千米/小时>80千米/小时,于是得到结论.
【详解】解:此车超速,
理由:∵∠POB=90°,∠PBO=45°,
∴△POB是等腰直角三角形,
∴OB=OP=100米,
∵∠APO=60°,
∴OA=OP=100≈173米,
∴AB=OA﹣OB=73米,
∴≈24米/秒≈86千米/小时>80千米/小时,
∴此车超速.
【点睛】
本题考查解直角三角形的应用问题.此题难度适中,解题关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.
21、(1),;(2)或.
【分析】 ⑴ 将点 A(1,m)B(2,1)代入y2得出k2,m;再将A,B坐标代入y1中,求出即可;
⑵ 直接根据函数图像写出答案即可.
【详解】解:点在双曲线上,
双曲线的解析式为
在双曲线上,
,
直线过两点,
,解得,
直线的解析式为.
根据函数图象可知,不等式的解集为或.
【点睛】
此题主要考查了一次函数与反比例函数交点问题,已知一个交点坐标先求出反比例函数的解析式是解题的关键.
22、,2
【分析】先根据分式混合运算的法则把原式进行化简,再选取使原式有意义的x的值代入进行计算即可.
【详解】解:原式
当时(、,其它的数都可以)
.
【点睛】
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
23、(1)矩形的长为12米,宽为6米;(2)面积不能为120平方米,理由见解析
【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;
(2)根据题意列出方程,用根的判别式判断方程根的情况即可.
【详解】解:(1)设垂直于墙的一边长为x米,
则x(30﹣2x)=72,
解方程得:x1=3,x2=12.
当x=3时,长=30﹣2×3=24>18,故舍去,
所以x=12.
答:矩形的长为12米,宽为6米;
(2)假设面积可以为120平方米,
则x(30﹣2x)=120,
整理得即x2﹣15x+60=0,
△=b2﹣4ac=152﹣4×60=﹣15<0,
方程无实数解,
故面积不能为120平方米.
【点睛】
此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程求解.
24、;.
【分析】原式括号中两项通分并利用同分母分式的减法法则计算,现时利用除法法则变形,约分得到最简结果,再把x的值代入计算即可.
【详解】
=
=
=;
当时,原式=.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
25、(1);(2).
【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形).
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
26、20°
【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.
【详解】解:由旋转可知:
∠BABʹ=40°,AB=ABʹ.
∴∠ABBʹ=∠ABʹB.
∴∠ABBʹ==70°.
∴∠BBʹCʹ=90°-70°=20°.
【点睛】
本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.
展开阅读全文