资源描述
(完整word)因式分解的常用方法及练习题
因式分解的常用方法
一、提公因式法.:ma+mb+mc=m(a+b+c)
二、公式法。
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1)平方差公式:(a+b)(a—b) = a2—b2
(2) 完全平方公式:(a±b)2 = a2±2ab+b2
(3) 立方和公式:a3+b3=(a+b)(a2-ab+b2)
(4) 立方差公式:a3—b3=(a—b)(a2+ab+b2)
(5)完全立方公式:(a±b)³=a³±3a²b+3ab²±b³
下面再补充两个常用的公式:
(6)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(7)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
三、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式:进行分解。
特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
例5、分解因式:
练习5、分解因式(1) (2) (3)
练习6、分解因式(1) (2) (3)
(二)二次项系数不为1的二次三项式——
条件:(1)
(2)
(3)
分解结果:=
例7、分解因式:
练习7、分解因式:(1) (2)
(3) (4)
(三)二次项系数为1的齐次多项式
例8、分解因式:
分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解.
1 8b
1 —16b
8b+(—16b)= -8b
解:=
=
练习8、分解因式(1)(2)(3)
(四)二次项系数不为1的齐次多项式
例9、 例10、
1 —2y 把看作一个整体 1 -1
2 —3y 1 -2
(—3y)+(-4y)= -7y (—1)+(-2)= -3
解:原式= 解:原式=
练习9、分解因式:(1) (2)
综合练习10、(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
四、分组分解法.
(一)分组后能直接提公因式
例1、分解因式:
分析:从“整体"看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部"看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.
解:原式=
= 每组之间还有公因式!
=
例2、分解因式:
解法一:第一、二项为一组; 解法二:第一、四项为一组;
第三、四项为一组。 第二、三项为一组.
解:原式= 原式=
= =
= =
练习:分解因式1、 2、
(二)分组后能直接运用公式
例3、分解因式:
分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 例4、分解因式:
解:原式= 解:原式=
= =
= =
练习:分解因式3、 4、
综合练习:(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
五、换元法。
例13、分解因式(1)
(2)
解:(1)设2005=,则原式=
=
=
(2)型如的多项式,分解因式时可以把四个因式两两分组相乘。
原式=
设,则
∴原式==
==
练习13、分解因式(1) (2)
六、添项、拆项、配方法。
例15、分解因式(1)
解法1—-拆项。 解法2——添项。
原式= 原式=
= = = = = =
= =
练习15、分解因式
(1) (2) (3)
第二部分:习题大全
经典一:
一、填空题
1。 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式。
2分解因式: m3-4m= .
3。分解因式: x2-4y2= __ _____.
4、分解因式:=___________ ______.
5.将xn—yn分解因式的结果为(x2+y2)(x+y)(x—y),则n的值为 。
6、若,则=_________,=__________.
二、选择题
7、多项式的公因式是( )
A、 B、 C、 D、
8、下列各式从左到右的变形中,是因式分解的是( )
A、 B、
C、 D、
10.下列多项式能分解因式的是( )
(A)x2—y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4
11.把(x-y)2-(y-x)分解因式为( )
A.(x-y)(x-y-1) B.(y-x)(x-y-1)
C.(y-x)(y-x-1) D.(y-x)(y-x+1)
12.下列各个分解因式中正确的是( )
A.10ab2c+6ac2+2ac=2ac(5b2+3c)
B.(a-b)2-(b-a)2=(a-b)2(a-b+1)
C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)
D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)
13.若k-12xy+9x2是一个完全平方式,那么k应为( )
A.2 B。4 C。2y2 D。4y2
三、把下列各式分解因式:
14、 15、
16、 17、
18、 19、;
五、解答题
20、如图,在一块边长=6。67cm的正方形纸片中,挖去一个边长=3。33cm的正方形。求纸片剩余部分的面积.
d
D
21、如图,某环保工程需要一种空心混凝土管道,它的规格是内径,外径长。利用分解因式计算浇制一节这样的管道需要多少立方米的混凝土?(取3.14,结果保留2位有效数字)
22、观察下列等式的规律,并根据这种规律写出第(5)个等式。
1。分解因式(1+y)²-2x²(1+y²)+x4(1-y)²
2.证明:对于任何数x,y,下式的值都不会为33
x5+3x4y-5x3y2+4xy4+12y5
因式分解小结
因式分解的一般步骤是:
(1)通常采用一“提”、二“公"、三“分”、四“变”的步骤.即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;
(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;
1. 通过基本思路达到分解多项式的目的
例1. 分解因式
分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把,,分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解.
解一:原式
解二:原式=
2。 通过变形达到分解的目的
例1. 分解因式
解一:将拆成,则有
解二:将常数拆成,则有
3. 在证明题中的应用
例:求证:多项式的值一定是非负数
分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值.本题要证明这个多项式是非负数,需要变形成完全平方数。
证明:
设,则
4。 因式分解中的转化思想
例:分解因式:
分析:本题若直接用公式法分解,过程很复杂,观察a+b,b+c与a+2b+c的关系,努力寻找一种代换的方法。
解:设a+b=A,b+c=B,a+2b+c=A+B
说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的.
中考点拨
1、在中,三边a,b,c满足 求证:
2、 若x为任意整数,求证:的值不大于100。
3、 将
试卷(因式分解)
一、填空:(30分)
1、若是完全平方式,则的值等于_____。
2、则=____=____3、与的公因式是_
4、若=,则m=_______,n=_________。
5、在多项式中,可以用平方差公式分解因式的
有________________________ ,其结果是 _____________________。
6、若是完全平方式,则m=_______.7、
8、已知则
9、若是完全平方式M=________。
10、,
11、若是完全平方式,则k=_______。14、若则___.
12、若的值为0,则的值是________.
13、若则=_____。15、方程,的解是________。
二、选择题:(10分)
1、多项式的公因式是( )
A、-a、 B、 C、 D、
2、若,则m,k的值分别是( )
A、m=—2,k=6,B、m=2,k=12,C、m=-4,k=—12、D m=4,k=12、
3、下列名式:中能用平方差公
式分解因式的有( )
A、1个,B、2个,C、3个,D、4个
4、计算的值是( )
A、 B、
三、分解因式:(30分)
1 、 2 、 3 、 4 、
5、 6、 7、 8、
四、代数式求值(15分)
1、 已知,,求 的值。
2、 若x、y互为相反数,且,求x、y的值
3、 已知,求的值
五、计算: (15)
(1) 0.75 ( 2) (3)
六、试说明:(8分)
1、对于任意自然数n,都能被动24整除.
2、两个连续奇数的积加上其中较大的数,所得的数就是夹在这两个连续奇数之间的偶数与较大奇数的积。
七、利用分解因式计算(8分)
1、一种光盘的外D=11。9厘米,内径的d=3。7厘米,求光盘的面积。(结果保留两位有效数字)
2、正方形1的周长比正方形2的周长长96厘米,其面积相差960平方厘米求这两个正方形的边长.
八、老师给了一个多项式,甲、乙、丙、丁四个同学分别对这个多项式进行了描述:
甲:这是一个三次四项式
乙:三次项系数为1,常数项为1。
丙:这个多项式前三项有公因式
丁:这个多项式分解因式时要用到公式法
若这四个同学描述都正确请你构造一个同时满足这个描述的多项式,并将它分解因式。(4分)
12
展开阅读全文