收藏 分销(赏)

无监督异常检测模型的鲁棒性基准.pdf

上传人:自信****多点 文档编号:2499980 上传时间:2024-05-30 格式:PDF 页数:13 大小:7.66MB
下载 相关 举报
无监督异常检测模型的鲁棒性基准.pdf_第1页
第1页 / 共13页
无监督异常检测模型的鲁棒性基准.pdf_第2页
第2页 / 共13页
无监督异常检测模型的鲁棒性基准.pdf_第3页
第3页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Robustness benchmark for unsupervised anomaly detectionmodelsPeiWang1,WeiZhai1,andYangCao1,21Department of Automation,University of Science and Technology of China,Hefei 230027,China;2Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei 230088,ChinaCorrespondence:Ya

2、ngCao,E-mail:2024TheAuthor(s).ThisisanopenaccessarticleundertheCCBY-NC-ND4.0license(http:/creativecommons.org/licenses/by-nc-nd/4.0/).Cite This:JUSTC,2024,54(1):0103(10pp)ReadOnlineAbstract:Duetothecomplexityanddiversityofproductionenvironments,itisessentialtounderstandtherobustnessofunsupervisedano

3、malydetectionmodelstocommoncorruptions.Toexplorethisissuesystematically,weproposeadata-setnamedMVTec-Ctoevaluatetherobustnessofunsupervisedanomalydetectionmodels.Basedonthisdataset,weex-ploretherobustnessofapproachesinfiveparadigms,namely,reconstruction-based,representationsimilarity-based,nor-maliz

4、ingflow-based,self-supervisedrepresentationlearning-based,andknowledgedistillation-basedparadigms.Further-more,weexploretheimpactofdifferentmoduleswithintwooptimalmethodsonrobustnessandaccuracy.Thisincludesthemulti-scalefeatures,theneighborhoodsize,andthesamplingratiointhePatchCoremethod,aswellasthe

5、multi-scalefeatures,theMMFmodule,theOCEmodule,andthemulti-scaledistillationintheReverseDistillationmethod.Finally,weproposeafeaturealignmentmodule(FAM)toreducethefeaturedriftcausedbycorruptionsandcombinePatchCoreandtheFAMtoobtainamodelwithbothhighperformanceandhighaccuracy.Wehopethisworkwillserveasa

6、nevalu-ationmethodandprovideexperienceinbuildingrobustanomalydetectionmodelsinthefuture.Keywords:robustnessbenchmark;anomalydetection;unsupervisedlearning;automatedopticalinspectionCLC number:TP391Document code:A1 IntroductionWiththeincreasingdemandsonproductquality,itissignific-anttodetectsurfacede

7、fectsinproductsduringproduction.Inscenariossuchasindustrialdefectdetection,thereisahighdemandforunsupervisedanomalydetectionmodelsduetothe lack of defect samples.Additionally,since the modelsneedtohandleimagedegradationinterferenceduringtesting,therobustnessofthemodelsneedstobeevaluated.Manyun-super

8、visedanomalydetectionmethodshavebeenproposed;these methods can be divided into five categories:reconstruction-based13,representation similarity-based46,normalizing flow-based7,8,self-supervised representationlearning-based9,andknowledgedistillation-based1012.The existing methods can achieve high acc

9、uracy on theMVTec13datasetthatisarelativelysimpledataset.However,therobustnessofthesemodelsisunknown.Duetothetem-poralandspatialdifferencesbetweenthetraininganddeploy-mentphases,thereisnoguaranteethattheimagesprocessedinactualproductionwillhavethesamequalityasthetrainingimagesandthatunpredictabledeg

10、radationofimagequalitymayoccur.Forexample,devicesthatrunforlongperiodsmaywearout,causingtherelativepositionofthecameratotheproducttodeviatefromthepresetvalue,whichcanleadtodefocusblurandgeometricshiftsintheimages.Therefore,thereisanurgentneedforameansofevaluatingtherobust-nessofmodelstoensureproduct

11、ionsafety.Paststudiesonthe robustness of CNN models have involved imageclassification14,objectdetection15,semanticsegmentation16,human pose estimation17,and other domains.Since defectsamples are unavailable to unsupervised anomaly detectionmodelsduring training,specialized research on the robust-nes

12、sofunsupervisedanomalydetectionmodelsisnecessary.Toaddresstheaforementionedneeds,weproposeaframe-work that includes a robust evaluation dataset,evaluationmetrics,and a method to improve the robustness of themodel.Itisworthnotingthatthedatasetandevaluationmet-ricsarealsoapplicableforevaluatingtherobu

13、stnessofsuper-vised models.Additionally,based on this framework,weevaluateandanalyzetherobustnessofmainstreamunsuper-viseddefectdetectionmodelsandobtainconclusionsaboutthefactorsaffectingrobustness.Inspired by Dan et al.14,we propose a dataset namedMVTec-Cwithdifferenttypesofcorruptionstoinvestigate

14、the robustness of unsupervised anomaly detection methodssystematically(see Fig.1).We select the corruption typesconsideringtheuncertaintiesasmuchaspossibleinthepro-duction scenario,including Gaussian noise,Poisson noise,motionblur,defocusblur,light,contrast,JPEGcompression,and geometry,with each cor

15、ruption corresponding to fiveseveritylevels.Weconsiderrobustnesstomeanhowwelltheperformanceontheoriginaldatacanbemaintainedoncor-rupteddata,sowedefinetherelativecorruptionperformancetomeasuretherobustnessofthemodel.To understand the robustness of existing unsupervisedArticlehttp:/Received:January 01

16、,2023;Accepted:March 22,202301031DOI:10.52396/JUSTC-2022-0165JUSTC,2024,54(1):0103anomalydetectionmodels,weselectoneortworepresentat-ivemethodsforevaluationfromeachofthefiveclassesofanomalydetectionmethods.Wefindthattherepresentationsimilarity-based and knowledge distillation-based methodsachievethe

17、 best balance between performance and robust-ness,whilethereconstruction-basedmethodshowsgoodro-bustnessattheworstperformance.SincePatchCoreandRe-verseDistillationbothhavehighperformanceandhighro-bustness,studyingoftheirrobustnessisvaluableforpracticalapplications.Therefore,weinvestigatetheeffectsof

18、differentfactorsontherobustnessofthesetwomethodsthroughex-haustiveablationexperiments.Wedrawseveralconclusionsbased on the experimental results:()High-level featurescanhelpconstructrobustfeaturerepresentations.()Multi-scalefeaturesarebeneficialforimprovingperformanceandrobustness.()Neighborhoodaggre

19、gationcannotimprovethe generalization capability of features.()The memorybank can maintain good robustness even with a smallsamplingratio,soitissuitableformodelinganormalsampledistribution.()Informationbottlenecksmakethefeaturesmorecompactandthusimprovetherobustnessofreversedis-tillation.()Multi-sca

20、le distillation can consider differentdefectsizesandhencecanimproverobustness.Toconstructarobustanomalydetectionmodel,wefocuson representation similarity-based methods(which performbestconsideringrobustnessandperformancesimultaneously)and attempt to optimize the feature representation.Defectscausead

21、riftinthefeatureswerelyontodiscriminatedefects.However,corruptionsintroduceanadditionaldriftthatleadstoadecreaseintheaccuracyofdetectingdefects.Consider-ingthedifferentcharacteristicsofcorruptionsanddefects,wehypothesizethatcorruptionsleadtogloballyconsistentdrift,whiledefectsleadtolocaldriftinfeatu

22、res.Basedonthishy-pothesis,weproposeafeaturealignmentmodule(FAM)toreducethegloballyconsistentdriftwhilepreservingthelocaldriftcausedbydefects,thusobtainingafeaturerepresentationthatisrobusttocorruptions.WeapplytheFAMtoPatch-Coreandsignificantlyimproveitsrobustnesswhilemaintain-ing high performance.O

23、verall,our contributions are asfollows:()Weconstructarobustbenchmarkforunsupervisedan-omalydetectionmethods,includingadatasetwitheightcor-ruption types,five severity levels,and metrics to assessrobustness.()Weevaluatetheperformanceandrobustnessofmain-streamunsupervisedanomalydetectionmethodsandfindt

24、hatrepresentation similarity-based and knowledge distillation-basedapproachesarethebestparadigmsintermsofperform-anceandrobustness.()Thedifferentcomponentsofthetwobest-performingmethodsarestudiedforablation,thushelpingtounderstandtheimpactofdifferentfactorsonrobustness.()Weproposeafeaturealignmentmo

25、duletorectifythecorrupted features.Combining the proposed module withPatchCoreyieldsamodelwithrobustnesswhilemaintaininghighperformance.2 Related work2.1 Unsupervised anomaly detectionInrecentyears,researchersinterestinanomalydetection,es-peciallyunsupervisedanomalydetection,hasincreasedrap-idly,and

26、manydatasetsandunsupervisedanomalydetectionalgorithms have been proposed.The most frequently useddatasetistheMVTec13thatcontainsfivetextureandtenob-jectclasses,totaling5354images.Toidentifydefectsfromimages,unsupervisedanomalyde-tectionalgorithmsshouldproduceeithertheimage-levelan-omalyscorerequired

27、foranomalydetectionorthepixel-levelanomaly map as required for the anomaly segmentation orboth.Themainstreamunsuperviseddetectionalgorithmscanbeclassifiedintofivecategories:reconstruction-based,rep-resentation similarity-based,self-supervised representationlearning-based,normalizing flow-based,and k

28、nowledgedistillation-based.Reconstruction.Reconstruction-basedapproaches typic-allyusegenerativeadversarialnetworks,autoencoders,andvariationalautoencoderstoreconstructtheinputimageundertheassumptionthatamodeltrainedonnormalsamplescancorrectlyreconstructonlynormalregionsbutnotdefectivere-gions.AnoGA

29、N1 used generative adversarial networks tolearnthedistributionofnormalimages,andthetrainingphasetrainsageneratorofnormalimagepatches.Inthetestphase,foreachpatchinthetestimage,thehiddenvectorisiterat-ivelyadjustedusingthediscriminantscoreandtheintermedi-atefeaturesofthediscriminatorasaguide.Finally,t

30、heresid-ualmapofthetestimageandtheoutputimageofthegenerat-orarecombinedwiththeresiduallossofthediscriminatorsintermediate features to identify defects.The f-AnoGAN18usedanautoencodertogeneratethehiddenvector,avoidingthe problem of time-consuming iterative optimization inAnoGAN.Ganomaly2detecteddefec

31、tsbasedonanencoder-decoder-encoderstructurebycomparingtheencodingofthefirstencoderwiththeencodingreconstructedbythesecondContrastMotion blurOriginalContrastMotion blurOriginalBightnessDefocus blurJPEG compressionBightnessDefocus blurJPEG compressionImpulse noiseGeometryGaussian noiseImpulse noiseGeo

32、metryGaussian noiseContrastMotion blurOriginalBightnessDefocus blurJPEG compressionImpulse noiseGeometryGaussian noiseFig.1.Sampleswithdifferentcorruptiontypes.Thefirstimageistheori-ginalimageinMVTec.RobustnessbenchmarkforunsupervisedanomalydetectionmodelsWangetal.01032DOI:10.52396/JUSTC-2022-0165JU

33、STC,2024,54(1):0103encoder.AE-SSIM3 introduced the structural similarityindexmeasure(SSIM)asthereconstructionlossoftheau-toencoder.Toaddresstheproblemthatdefectsareunexpec-tedlywellreconstructedintheautoencoder-basedapproaches,RIAD19proposedtrainingantheautoencoderbyrecoveringimagesthatarepartiallye

34、rased.Representation similarity.In representation similarity-basedmethods,thenormalfeaturedistributionisfirstexpli-citlymodeled during training.K nearest neighbors or Ma-halanobisdistanceisusedtocalculatethesimilaritybetweentestfeaturesandnormalfeaturesduringtesting.Sampleswithlowsimilarityareconsid

35、ereddefective.GaussianAD20pro-posedtheuseofamultivariateGaussianmodeltodescribethe distribution of pre-trained features of normal samples.SPADE4savedpatch-levelfeaturesandimage-levelfeaturesextracted from ResNet;K nearest neighbors searched fromimage-level normal features are used to compute anomaly

36、scores;andpatchfeaturesoftheseselectedimagesarefurtherusedtocomputepatch-levelanomalymaps.PaDim5estim-atedamultivariateGaussianmodelateachpatchpositionandusesarandomdimensionselectionstrategytoreducethesizeof the patch features.PatchCore6 employed a position-independentfeaturememorybankandusesagreed

37、yselec-tionstrategytoreducethesizeofthememorybank.Self-supervised representation learning.Severalmethods2123arededicatedtolearningdiscriminativerepres-entationsthroughproxytaskssuchaspredictingthegeomet-ric transformation of the image or contrast learning24.However,thesemethodsarelimitedtolearninghi

38、gh-levelse-manticinformation.CutPaste9constructedanomaliesbyran-domlycroppingandpastingimageblocksanddemonstratesthatthenetworksperceptionofsuchanomaliescanbegener-alizedtoactualdefects.Normalizing flow.Thenormalizingflow-basedapproachusesnormalizingflowstotransformthenormalfeaturedistri-bution into

39、 a Gaussian distribution.The network outputs aprobabilityindicatingwhethertheinputiswithinthenormaldistribution,andalowprobabilityisexpectedwhentheinputisdefective.DifferNet7appliedanormalizingflowtoimage-levelpre-trainedfeaturestoobtaintheimage-levelanomalyscore.Cflow8formedaconditionalnormalizingf

40、lowbyin-corporatingpositionalencodingintheflow,thentheanom-aly map is obtained by sliding the conditional normalizingflowoverpatches.Knowledge distillation.In knowledge distillation-basedapproaches,theteachermodelandthestudentmodelareex-pectedtoproducefeatureswithdifferencesinthedefectiveimages1012,

41、25 that use a set of teacherstudent model pairswithdifferentperceptualfieldstocomputeresidualmapsatmultiplescales.Salehietal.11proposedthatthedistillationoffeaturesfromanexpertnetworkatvariouslayersisprefer-abletothatofasinglelayer.Intheseapproaches,theteacherandstudentmodelsusesimilarstructures,lea

42、dingtoacon-vergenceoftheteacherandstudentmodelsrepresentationsof defects.Deng et al.12 proposed a reverse distillationparadigmtosolvethisproblem.2.2 Evaluating the robustness of anomaly detectionmodelsInrecentyears,manyworkshavefocusedonevaluatingtherobustnessofanomaly-basedintrusiondetectionsystems

43、.Inintrusiondetectionscenarios,attacksareappliedtoanomalydetectionmodels,andthechangesinmodelperformancearecalculatedasrobustnesscriteria.Researchersarededicatedtodesigning better attacks to evaluate model weaknesses.Goodgeetal.26designeddifferenttypesofattackstoevalu-atemodelrobustnessandimprovethe

44、robustnesstoadversari-alattacksbyoptimizingthelatentrepresentation.Schneideretal.27proposedusingdifferentfeaturerobustnessmetrics,andHanetal.28proposedusinggray/black-boxtraffic-spacead-versarialattackstoevaluatemodelrobustness.Tobetterde-terminewhethertheattackedsamplesareanomalies,Gmezetal.29propo

45、sedusingmultiplesupportingmodelsandfoundthat the 1D CNN is more robust than LSTM according totheirevaluationmethod.Theimpactofdatapoisoningonan-omalydetectionsystemshasalsobeenstudied3032.However,thesestudiesontherobustnessofanomalydetec-tionhavefocusedmainlyonintrusiondetectionscenariosandarediffic

46、ulttoapplytootherscenariosforthefollowingreas-ons.First,mostoftheseworkshaveevaluatedtherobustnessagainstadversarialattacksordatapollution,buttherobust-nessagainstcommoncorruptionisalsoimportant,especiallyinindustrialdefectdetectionscenarios.Second,anomalyde-tectionmodels in intrusion detection scen

47、arios mainly ad-dressone-dimensionaltime-seriesdata,whileimageanomalydetectionmodelsprocessmulti-dimensionalimagedata,androbustmodelsneedtoadapttomorecomplexenvironmentalchanges.Tothebestofourknowledge,researchonthero-bustnessofimage-basedanomalydetectioninscenariossuchasindustrialdefectdetectionisl

48、acking.2.3 Benchmarking robustness to common corruptionsManymethodshavebeenproposedforstudyingtherobust-nessofCNNsagainstcommonimagecorruptions1417,33,34.Toinvestigatetherobustnessofdifferentclassificationnetworksagainstcommonimagecorruptionsandperturbations,Danetal.14 proposed two datasets,ImageNet

49、-C and ImageNet-P.Michaelisetal.15provideabenchmarkforevaluatingtheper-formanceofatargetdetectionmodelinthefaceofimagecor-ruptions.Similarly,Kamannetal.16accessedtherobustnessofthesemanticsegmentationmodeltoreal-worldimagecor-ruptions.Altindis et al.33 evaluated instance segmentationmodelswithreal-w

50、orldimagecorruptionsandout-of-domainimages.Wang et al.17 constructedthree robustness bench-marks to study the drawbacks of human pose estimationmodels.3 Methods3.1 Robustness benchmarkWe construct the robust benchmark dataset MVTec-C byaddingeightcorruptiontypeswithfiveseveritylevelstoeachimageinthe

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服