1、新人教版九年级数学下册期中考试题(各版本)班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1比较2,的大小,正确的是()ABCD2已知抛物线经过和两点,则n的值为()A2B4C2D43若关于x的方程=3的解为正数,则m的取值范围是()AmBm且mCmDm且m4“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()ABCD5下列对一元二次方程x2+x3=0根的情况的判断,正确的是()A有两个不相等实数根B有
2、两个相等实数根C有且只有一个实数根D没有实数根6已知,则代数式的值是()A2B-2C-4D7如图,在ABCD中,已知AD=5cm,AB=3cm,AE平分BAD交BC边于点E,则EC等于 ( )A1cmB2cmC3cmD4cm8如图,在ABC中,CD平分ACB交AB于点D,过点D作DEBC交AC于点E,若A=54,B=48,则CDE的大小为()A44B40C39D389如图,在平行四边形中,、是上两点,连接、,添加一个条件,使四边形是矩形,这个条件是()ABCD10如图,在ABC中,C=90,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B动点Q同时从点A出发,以1cm
3、/s的速度沿折线ACCB方向运动到点B设APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是() ABCD二、填空题(本大题共6小题,每小题3分,共18分)1计算:_2因式分解:_3若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_4如图,在ABC中,ADBC于D,BEAC于E,AD与BE相交于点F,若BFAC,则ABC_度 5如图,已知AB是O的直径,AB=2,C、D是圆周上的点,且CDB=30,则BC的长为_. 6如图抛物线y=x2+2x3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中
4、点,连接DE,DF,则DE+DF的最小值为_ 三、解答题(本大题共6小题,共72分)1解方程:2计算:.3如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当BMN是等腰三角形时,直接写出m的值4如图,在长方形ABCD中,边AB、BC的长(ABBC)是方程x2-7x+12=0的两个根点P从点A出发,以每秒1个单位的速度沿ABC边ABCA的方向运动,运动时间为t(秒)(1)求AB与BC的长;(2)当点P运动到边
5、BC上时,试求出使AP长为时运动时间t的值;(3)当点P运动到边AC上时,是否存在点P,使CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由5为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了 名学生,两幅统计图中的m ,n (2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请
6、用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率6某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、C5、A6、B7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、3、24、455、16、三、解答题(本大题共6小题,共72分)1、x=32、3、(1)这个二次函数的表达式是y=x24x+3;(2)SBCP最大=;(3)当BMN是等腰三角形时,m的值为,1,24、(1) AB3,BC4;(2) t4;(3) t为10秒或9.5秒或秒时,CDP是等腰三角形.5、(1)200 , ;(2)1224人;(3)见解析,.6、(1)100,50;(2)10.8 / 8