资源描述
2023年部编版九年级数学下册期中试卷(A4打印版)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.函数的自变量x的取值范围是( )
A. B. C. D.
2.下列说法中正确的是 ( )
A.若,则 B.是实数,且,则
C.有意义时, D.0.1的平方根是
3.已知关于x的分式方程=1的解是负数,则m的取值范围是( )
A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2
4.若x取整数,则使分式的值为整数的x值有( )
A.3个 B.4个 C.6个 D.8个
5.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为( )
A. B. C. D.
6.已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为( )
A.5 B.10 C.11 D.13
7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )
A. B. C. D.
8.一次函数y=ax+b和反比例函数y在同一直角坐标系中的大致图象是( )
A. B.
C. D.
9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
A.(-,1) B.(-1,) C.(,1) D.(-,-1)
10.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2 B.3 C.5 D.6
二、填空题(本大题共6小题,每小题3分,共18分)
1.化简:=____________.
2.分解因式:=___________.
3.已知关于x的分式方程有一个正数解,则k的取值范围为________.
4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.
5.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为__________(结果保留根号和π).
6.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是__________.
三、解答题(本大题共6小题,共72分)
1.解方程:
2.已知A-B=7a2-7ab,且B=-4a2+6ab+7.
(1)求A等于多少?
(2)若|a+1|+(b-2)2=0,求A的值.
3.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
4.如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点
(1)求证:;
(2)若,,求的度数.
5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:
(1)本次调查共抽取了 名学生,两幅统计图中的m= ,n= .
(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.
6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、D
2、C
3、D
4、B
5、C
6、D
7、C
8、A
9、A
10、C
二、填空题(本大题共6小题,每小题3分,共18分)
1、2
2、
3、k<6且k≠3
4、3
5、﹣
6、2﹣2.
三、解答题(本大题共6小题,共72分)
1、
2、(1)3a2-ab+7;(2)12.
3、(1)略(2)略
4、(1)略;(2)78°.
5、(1)200 , ;(2)1224人;(3)见解析,.
6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
6 / 6
展开阅读全文