资源描述
2023年部编版八年级数学下册期中试卷及答案【学生专用】
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的相反数是( )
A. B. C. D.
2.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A. B. C. D.
3.已知,则的值是( )
A.9 B.8 C. D.
4.如果,那么代数式的值为( )
A.-3 B.-1 C.1 D.3
5.下列各组数中,能构成直角三角形的是( )
A.4,5,6 B.1,1, C.6,8,11 D.5,12,23
6.如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于( )
A. B. C. D.
7.下列四个图形中,线段BE是△ABC的高的是( )
A. B.
C. D.
8.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )
A.20° B.30° C.45° D.50°
9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为( )
A.4 B.8 C.16 D.64
10.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )
A.6 B.5 C.4 D.
二、填空题(本大题共6小题,每小题3分,共18分)
1.的立方根是________.
2.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.
3.若,则m-n的值为________.
4.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD的面积为,则图中阴影部分的面积为________.
5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.
6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
三、解答题(本大题共6小题,共72分)
1.用适当的方法解方程组
(1) (2)
2.先化简,再求值:,其中a=2.
3.已知,且,.
(1)求b的取值范围
(2)设,求m的最大值.
4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.
5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品
甲
乙
进价(元/件)
售价(元/件)
200
100
若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为件(),设销售完50件甲、乙两种商品的总利润为元,求与之间的函数关系式,并求出的最小值.
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、C
3、D
4、D
5、B
6、B
7、D
8、D
9、D
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、-3.
2、30°或150°.
3、4
4、
5、4
6、8
三、解答题(本大题共6小题,共72分)
1、(1) ;(2)
2、,1.
3、(1);(2)2
4、略.
5、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
6、(1)分别是120元,60元;(2),当a=30件时,=3200元
7 / 7
展开阅读全文