资源描述
2022-2023学年九上数学期末模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是
A. B. C. D.
2.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.任意画一个三角形,其内角和是360°
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
3.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是( )
A. B.
C. D.
4.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为( )
A.m B.m C. m D. m
5.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为( )
A. B. C. D.3
6.如图,四边形ABCD的顶点A,B,C在圆上,且边CD与该圆交于点E,AC,BE交于点F.下列角中,弧AE所对的圆周角是( )
A.∠ADE B.∠AFE C.∠ABE D.∠ABC
7.下列成语所描述的事件是必然事件的是( )
A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长
8.下列式子中表示是的反比例函数的是( )
A. B. C. D.
9.一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的( )
A. B. C. D.
10.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=( )
A.
B.
C.
D.
二、填空题(每小题3分,共24分)
11.分式方程=1的解为_____.
12.如图,在菱形ABCD中,边长为1,∠A=60˚,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,…,则四边形A2019B2019C2019D2019的面积是_____.
13.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.
14.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,若AD=3,CE=5,则CD等于_____.
15.如图,从一块矩形铁片中间截去一个小矩形,使剩下部分四周的宽度都等于,且小矩形的面积是原来矩形面积的一半,则的值为_________.
16.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为,那么该矩形的面积为___.
17.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.
18.方程的根是___________.
三、解答题(共66分)
19.(10分)如图,AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC,BC.
(1)求证:BC平分∠ABE;
(2)若⊙O的半径为3,cosA=,求CE的长.
20.(6分)如图,点在上,,交于点,点为射线上一动点, 平分,连接.
(1)求证:;
(2)连接,若,则当_______时,四边形是矩形.
21.(6分)在平面直角坐标系中,已知,.
(1)如图1,求的值.
(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.
①当恰好落在的延长线上时,如图2,求出点、的坐标.
②若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.
22.(8分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接
求的度数;
求证:四边形是菱形.
23.(8分)如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(- 3,4),点B的坐标为(6,n).
(1)求该反比例函数和一次函数的解析式;
(2)连接OB,求△AOB 的面积;
(3)在x轴上是否存在点P,使△APC是直角三角形. 若存在,求出点P的坐标;若不存在,请说明理由.
24.(8分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.
学生参与“朗读”的态度统计表
类别
人数
所占百分比
18
20
4
合计
请你根据以上信息,解答下列问题:
(1)______,______,并将条形统计图补充完整;
(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?
(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.
25.(10分)如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动.
(1)如果,求点运动的时间;
(2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.
26.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
参考答案
一、选择题(每小题3分,共30分)
1、B
【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.
【详解】已知给出的三角形的各边AB、CB、AC分别为、2、、
只有选项B的各边为1、、与它的各边对应成比例.故选B.
【点晴】
此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.
2、D
【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.
【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;
B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;
C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;
D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.
故选:D.
【点睛】
本题考查频率估算概率,关键在于通过图象得出有利信息.
3、B
【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.
【详解】解:①当k>0时,
一次函数y=kx﹣k经过一、三、四象限,
反比例函数的的图象经过一、三象限,
故B选项的图象符合要求,
②当k<0时,
一次函数y=kx﹣k经过一、二、四象限,
反比例函数的的图象经过二、四象限,
没有符合条件的选项.
故选:B.
【点睛】
此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.
4、A
【解析】设PA=PB=PB′=x,在RT△PCB′中,根据sinα=,列出方程即可解决问题.
【详解】设PA=PB=PB′=x,
在RT△PCB′中,sinα=,
∴=sinα,
∴x-1=xsinα,
∴(1-sinα)x=1,
∴x=.
故选A.
【点睛】
本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.
5、B
【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.
【详解】由图形折叠可得BE=EG,DF=FG,
∵正方形ABCD的边长为3,BE=1,
∴EG=1,EC=3-1=2,CF=3-FG,
在直角三角形ECF中,
∵EF2=EC2+CF2,
∴(1+GF)2=22+(3-GF)2,
解得GF=,
∴EF=1+=.
故正确选项为B.
【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.
6、C
【分析】直接运用圆周角的定义进行判断即可.
【详解】解:弧AE所对的圆周角是:∠ABE或∠ACE
故选:C
【点睛】
本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.
7、A
【解析】必然事件就是一定会发生的事件,依据定义即可解决
【详解】A.水涨船高是必然事件,故正确;
B. 水中捞月,是不可能事件,故错误;
C.一箭双雕是随机事件,故错误
D.拔苗助长是不可能事件,故错误
故选:A
【点睛】
此题考查随机事件,难度不大
8、D
【解析】根据反比例函数的定义逐项分析即可.
【详解】A. 是一次函数,故不符合题意;
B. 二次函数,故不符合题意;
C. 不是反比例函数,故不符合题意;
D. 是反比例函数,符合题意;
故选D.
【点睛】
本题考查了反比例函数的定义,一般地,形如(k为常数,k≠0)的函数叫做反比例函数.
9、A
【分析】设平均每次降低成本的x,根据题意列出方程,求出方程的解即可得到结果.
【详解】解:设平均每次降低成本的x,
根据题意得:1000-1000(1-x)2=190,
解得:x1=0.1=10%,x2=1.9(舍去),
则平均每次降低成本的10%,
故选A.
【点睛】
此题考查了一元二次方程的应用,弄清题意是解本题的关键.
10、C
【解析】根据圆内接四边形的性质求出∠A的度数,再根据圆周角定理求解即可.
【详解】∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,
∴∠A+∠BCD=180°,
∴∠A=50°,
由圆周角定理得,2∠A=∠BOD=100°,
故选C.
【点睛】
本题考查了圆内接四边形的性质,圆周角定理,熟练掌握圆内接四边形的对角互补是解题的关键.
二、填空题(每小题3分,共24分)
11、x=2
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】解:去分母得:2+x﹣1=x2﹣1,即x2﹣x﹣2=0,
分解因式得:(x﹣2)(x+1)=0,
解得:x=2或x=﹣1,
经检验x=﹣1是增根,分式方程的解为x=2,
故答案为:x=2
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.
12、
【分析】连接AC、BD,根据菱形的面积公式,得S菱形ABCD=,进而得矩形A1B1C1D1的面积,菱形A2B2C2D2的面积,以此类推,即可得到答案.
【详解】连接AC、BD,则AC⊥BD,
∵菱形ABCD中,边长为1,∠A=60°,
∴S菱形ABCD=AC∙BD=1×1×sin60°=,
∵顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1,
∴四边形A1B1C1D1是矩形,
∴矩形A1B1C1D1的面积=AC∙BD=AC∙BD=S菱形ABCD==,
菱形A2B2C2D2的面积=×矩形A1B1C1D1的面积=S菱形ABCD==,
……,
∴四边形A2019B2019C2019D2019的面积=,
故答案为:.
【点睛】
本题主要考查菱形得性质和矩形的性质,掌握菱形的面积公式,是解题的关键.
13、(47,)
【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.
【详解】解:∵OA1=1,
∴OC1=1,
∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,
∴C1的纵坐标为:sim60°. OC1=,横坐标为cos60°. OC1=,
∴C1,
∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,
∴A1C2=2,A2C3=4,A3C4=8,…
∴C2的纵坐标为:sin60°A1C2=,代入y求得横坐标为2,
∴C2(2,),
∴C3的纵坐标为:sin60°A2C3=,代入y求得横坐标为5,
∴C3(5,),
∴C4(11,),C5(23,),
∴C6(47,);
故答案为(47,).
【点睛】
本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.
14、
【分析】根据直角三角形的性质得出AE=CE=1,进而得出DE=2,利用勾股定理解答即可.
【详解】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=1,
∴AE=CE=1,
∵AD=3,
∴DE=2,
∵CD为AB边上的高,
∴在Rt△CDE中,CD=,
故答案为:.
【点睛】
此题考查勾股定理的应用以及直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.
15、1
【分析】本题中小长方形的长为(80−2x)cm,宽为(60−2x)cm,根据“小长方形的面积是原来长方形面积的一半”可列出方程(80−2x)(60−2x)=×80×60,解方程从而求解.
【详解】因为小长方形的长为(80−2x)cm,宽为(60−2x)cm,则其面积为(80−2x)(60−2x)cm2
根据题意得:(80−2x)(60−2x)=×80×60
整理得:x2−70x+600=0
解之得:x1=1,x2=60
因x=60不合题意,应舍去
所以x=1.
故答案为:1.
【点睛】
此题解答时应结合图形,分析出小长方形的长与宽,利用一元二次方程求解,另外应判断解出的解是否符合题意,进而确定取舍.
16、240
【分析】由矩形的性质和三角函数求出AB,由勾股定理求出AD,即可得出矩形的面积.
【详解】解:如图所示:
∵四边形ABCD是矩形,
∴∠BAD=90°,AC=BD=26,
∵,
∴,
∴,
∴该矩形的面积为:;
故答案为:240.
【点睛】
本题考查了矩形的性质、勾股定理、三角函数;熟练掌握矩形的性质,由勾股定理求出AB和AD是解决问题的关键.
17、1
【解析】试题解析:x2+2x-1=0,
x2+2x=1,
x2+2x+1=2,
(x+1)2=2,
则m=1;
故答案为1.
18、,.
【解析】试题分析:,∴,∴,.故答案为,.
考点:解一元二次方程-因式分解法.
三、解答题(共66分)
19、(1)证明见解析;(2).
【分析】(1)根据切线的性质得OC⊥DE,则可判断OC∥BE,根据平行线的性质得∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE;
(2)由已知数据可求出AC,BC的长,易证△BEC∽△BCA,由相似三角形的性质即可求出CE的长.
【详解】(1)证明:∵CD是⊙O的切线,
∴OC⊥DE,
而BE⊥DE,
∴OC∥BE,
∴∠OCB=∠CBE,
而OB=OC,
∴∠OCB=∠CBO,
∴∠OBC=∠CBE,
即BC平分∠ABE;
(2)∵⊙O的半径为3,
∴AB=6,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵cosA=,
∴=,
∴AC=2,
∴BC==2,
∵∠ABC=∠ECB,∠ACB=∠BEC=90°,
∴△BEC∽△BCA,
∴=,
即=,
∴CE=.
【点睛】
本题考查了切线的性质,平行线的判定和性质,勾股定理的运用以及相似三角形的判定和性质,熟记和圆有关的各种性质定理是解题的关键.
20、(1)见详解;(2)1
【分析】(1)先证,再证,可得,即可得出结论;
(2)根据矩形的性质可得∠BCA=90°,再证△ABC≌△ADC,即可解决问题.
【详解】(1)证明:∵平分
∴
∵
∴
∵
∴
∴
∴
(2) 当1时,四边形是矩形.
当四边形是矩形,
∴∠BCA=90°,
又∵平分,
∴∠BAC=∠DAC
∴△ABC≌△ADC,
∴BC=DC
又∵
∴DC=1
故答案为1.
【点睛】
本题考查矩形判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、(1);(2)①,②;(3)
【解析】(1)作AH⊥OB,根据正弦的定义即可求解;
(2)作MC⊥OB,先求出直线AB解析式,根据等腰三角形的性质及三角函数的定义求出M点坐标,根据MN∥OB,求出N点坐标;
(3)由于点C是定点,点P随△ABO旋转时的运动轨迹是以B为圆心,BP长为半径的圆,故根据点和圆的位置关系可知,当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长.又因为BP的长因点D运动而改变,可先求BP长度的范围.由垂线段最短可知,当BP垂直MN时,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值.
【详解】(1)作AH⊥OB,
∵,.
∴H(3,5)
∴AH=3,AH=
∴==
(2)由(1)得A(3,4),又
求得直线AB的解析式为:y=
∵旋转,∴MB=OB=6,
作MC⊥OB,∵AO=BO,
∴∠AOB=∠ABO
∴MC=MBsin∠ABO=6×=
即M点的纵坐标为,代入直线AB得x=
∴,
∵∠NMB=∠AOB=∠ABO
∴MN∥OB,又MN=AB=5,
则+5=
∴
(3)连接BP
∵点D为线段OA上的动点,OA的对应边为MN
∴点P为线段MN上的动点
∴点P的运动轨迹是以B为圆心,BP长为半径的圆
∵C在OB上,且CB=OB=3
∴当点P在线段OB上时,CP=BP−BC最短;当点P在线段OB延长线上时,CP=BP+BC最长
如图3,当BP⊥MN时,BP最短
∵S△NBM=S△ABO,MN=OA=5
∴MN⋅BP=OB⋅yA
∴BP= ==
∴CP最小值=−3=
当点P与M重合时,BP最大,BP=BM=OB=6
∴CP最大值=6+3=9
∴线段CP长的取值范围为.
【点睛】
此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.
22、 (1);(2)见解析.
【分析】(1)已知C、BD分别是∠BAD、∠ABC的平分线,根据角平分线的定义可得∠DAC=∠BAC,∠ABD=∠DBC,又因AE // BF,根据平行线的性质可得∠DAB+∠CBA=180°,即可得∠BAC+∠ABD=90°,∠AOD=90°;(2)根据平行线的性质和角平分线的定义易证AB=BC,AB=AD,即可得AD=BC,再由AD // BC,根据一组对边平行且相等的四边形为平行四边形可得四边形ABCD是平行四边形,再根据一组邻边相等的平行四边形为菱形即可判定四边形ABCD是菱形.
【详解】∵、分别是、的平分线,
∴,,
∵,
∴,
∴,
∴;
证明:∵,
∴,,
∵、分别是、的平分线,
∴,,
∴,,
∴,,
∴,
∵,
∴四边形是平行四边形,
∵,
∴四边形是菱形.
【点睛】
本题考查了平行线的性质、角平分线的定义、等腰三角形的判定及性质、菱形的判定,证明四边形ABCD是平行四边形是解决本题的关键.
23、(1)反比例函数的解析式为y=﹣ ; 一次函数的解析式为y=﹣x+2; (2);(3)存在,满足条件的P点坐标为(﹣3,0)、(﹣,0).
【解析】(1)先把代入得到的值,从而确定反比例函数的解析式为;再利用反比例函数解析式确定B点坐标为,然后运用待定系数法确定所求的一次函数的解析式为
即可求得.
(3)过A点作轴于,交x轴于,则点的坐标为;再证明利用相似比计算出则,所以点的坐标为,于是得到满足条件的P点坐标.
【详解】将代入,得
∴反比例函数的解析式为;
将代入,得
解得
将和分别代入得,
解得,
∴所求的一次函数的解析式为
(2)当时,解得:
(3)存在.
过A点作轴于,交x轴于,如图,
点坐标为
点的坐标为
而
即
点的坐标为
∴满足条件的点坐标为
24、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)
【分析】(1)先用20除以40%求出样本容量,然后求出a, m的值,并补全条形统计图即可;
(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;
(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算.
【详解】解:(1))20÷40%=50人,
a=18÷50×100%=36%,
m=50×16%=8,
(2)b=4÷50×100%=8%,(人)
∵∴这次活动能顺利开展.
(3)树状图如下:
由此可见,共有12种等可能的结果,其中所选两人都是女生的结果数有2种
∴(两人都是女生).
【点睛】
此题考查了统计表和条形统计图的综合,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比.
25、(1)或(2)直线与相切,理由见解析
【分析】(1)当∠POA=90°时,点P运动的路程为⊙O周长的或,所以分两种情况进行分析;
(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.
【详解】解:(1)当∠POA=90°时,根据弧长公式可知点P运动的路程为⊙O周长的或,设点P运动的时间为ts;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=3;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=9;
∴当∠POA=90°时,点P运动的时间为3s或9s.
(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切
理由如下:
当点P运动的时间为2s时,点P运动的路程为4πcm,
连接OP,PA;
∵半径AO=12cm,
∴⊙O的周长为24πcm,
∴的长为⊙O周长的,
∴∠POA=60°;
∵OP=OA,
∴△OAP是等边三角形,
∴OP=OA=AP,∠OAP=60°;
∵AB=OA,
∴AP=AB,
∵∠OAP=∠APB+∠B,
∴∠APB=∠B=30°,
∴∠OPB=∠OPA+∠APB=90°,
∴OP⊥BP,
∴直线BP与⊙O相切.
【点睛】
本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
26、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
展开阅读全文