收藏 分销(赏)

边坡支护专业课程设计指导书.doc

上传人:a199****6536 文档编号:2425629 上传时间:2024-05-30 格式:DOC 页数:30 大小:1.74MB
下载 相关 举报
边坡支护专业课程设计指导书.doc_第1页
第1页 / 共30页
边坡支护专业课程设计指导书.doc_第2页
第2页 / 共30页
边坡支护专业课程设计指导书.doc_第3页
第3页 / 共30页
边坡支护专业课程设计指导书.doc_第4页
第4页 / 共30页
边坡支护专业课程设计指导书.doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、北京交通大学边坡支护课程设计土木建筑工程学院岩土工程系岩石力学教研室-11-25边坡支护课程设计任务书一、设计任务 铜(陵)汤(口)高速公路0904(K144+017K144+080段)路堑高边坡位于安徽省黄山市黄山区太平湖镇广阳乡境内高速公路线路右侧,为开挖形成路堑岩质高边坡,边坡高约30m,长63m。为了保证该边坡长期稳定和高速公路运营安全,需要对该边坡进行加固整治。规定采用预应力锚索与格构梁组合方式加固整治,并按建筑边坡工程设计规范(GB50330-)进行设计。二、设计资料(1)地形地质平面图和横剖面图(见附件一、附件二)(2)边坡工程地质条件与水文地质条件 地形地貌与气象边坡所在地区地

2、貌属皖南低山丘陵,地势起伏较大,地面高程90170m,植被发育,以乔木、灌木为主。工作区属北亚热带季风气候区,具备气候温和湿润、雨量充沛、日照充分、无霜期长、四季分明等特点。区内年平均气温为15.416.0,极端最高气温42,极端最低气温-13.5,七、八月份气温最高,月平均气温达2729,一月份气温最低,月平均气温为2.63.5,年平均无霜期234天。区内雨量充沛,近年平均降水量1673.5mm,最大为2525.7mm,最小为627.9mm,区内平均年蒸发量为1216.51483.9mm。地层岩性 边坡及附近出露地层重要为第四系坡积层(Q4cl+dl),基岩为志留系下统霞乡组粉砂岩(S1x)

3、。地层岩性由新至老如下: 第四系(Q4 el+dl)坡积层:为含角砾亚粘土,灰黄色,可塑,中密,散体构造,重要坡顶及坡脚地带,坡面厚度不大于0.5m,最大厚度5.65m。志留系下统霞乡组强风化粉砂岩:灰黄色、灰褐色,粉砂质构造,层状构造,岩层产状为295300/4450,节理裂隙发育,层厚521m。弱风化粉砂岩:灰黄色、灰褐色,粉砂质构造,层状构造,岩层产状为295300/4450,节理裂隙发育,层厚516m。微风化粉砂岩:青灰色,粉砂质构造,层状构造,岩层产状为295300/4450,节理发育。地质构造高边坡路段地层呈单斜产出,岩层产状较稳定,为295300/4450,偶夹有规模较小层间小挠

4、曲。岩体中构造面发育,发育重要构造面有: 2030/7580张扭性构造面,平直,贯通,间距2030cm,最大间距为2m,局部呈张开状,充填少量泥化物,具过水痕迹,为与线路平行边坡产生变形重要依附面;29/4045扭性构造面;125130/7982弯张面;180/5565张扭性构造面;90/70压扭性构造面;115130/4045张扭性构造面。其中、两组构造面是走向与线路平行边坡产生崩塌重要依附面;、是走向垂直线路边坡产生坍塌控制面。地震工作区属扬州铜陵地震带,黄山区地震基本烈度为度区。依照中华人民共和国地震动参数区划图(GB18306),本场地地震动峰值加速度为0.05g,相称于原地震基本烈度

5、度。依照国标规范建筑抗震设计(GB50011)规定,属于抗震不利地段,应按地震基本烈度提高一度进行抗震设防。边坡岩体分类按照建筑边坡工程技术规范中边坡岩体分类原则,904边坡岩体属于类岩体。(3)边坡地形地质平面图(见附件一)、边坡横剖面图(见附件二)(4)边坡岩体和滑动面物理力学参数如下: 边坡岩体为中风化粉砂岩,重度为25kN/m3;滑动面粘聚力C为5kPa,摩擦角为28,地基抗力系数k为150000kN/m3。(5)混凝土力学参数请依照所拟定混凝土级别参照关于规范查找。(6)钢绞线、钢筋规格及力学参数见课程设计指引书。(7)计算中所需其她材料力学参数请参照有关规范或原则。 三、设计规定(

6、1)按照建筑边坡工程技术规范拟定边坡安全级别和安全系数;(2)以边坡中部横剖面为代表,采用极限平衡分析办法,计算开挖后边坡稳定安全系数,据此评价该路堑边坡稳定限度;(3)计算边坡剩余下滑力E和稳定边坡所需锚固力T;(4)依照边坡高度与长度、需要提供锚索力T、滑动面位置和倾角等,初步拟定锚固方案,拟定所需预应力锚索数量,进一步计算每根锚索需要分担锚固力设计值;(5)预应力锚索构造计算与设计,拟定锚索张拉荷载和锁定荷载;(6)初步拟定格构梁布置方式与梁几何尺寸;(7)格构梁构造计算与构造设计;(8)加固后边坡稳定性验算;(9)工程量计算;(10)拟定边坡加固施工办法与程序;四、分组及各组设计任务

7、本次课程设计共分7个小组(分组状况见下表),除了剖面图中滑动面略有区别外,各个小组设计内容基本相似。每个小组均包括8名同窗,虽然组内所有同窗设计内容相似,并容许互相讨论,但规定每个同窗应独立完毕,并单独提交设计成果。小组编号起始学号结束学号剖面图编号111301006122310811212231085122311102312231111122311553412231165122312064512231207122312385612231244122312786712231280122730477五、设计阐明书内容(1)封面(题目、专业、年级、姓名、学号)(2)目录(附页次)(3)设计阐明书正

8、文应涉及如下重要内容: 1)设计任务及边坡性质和用途 .2)基本设计资料 3)边坡安全级别拟定与安全系数选取及根据 4)边坡稳定性分析与稳定性评价 5)加固方案选取及根据分析 6)加固设计计算 7)支挡构造构造设计 8)预应力张拉值与锁定值拟定及根据 9)施工顺序与注意事项10)重要工程量计算(4)设计阐明书应采用计算机编写,并以A4纸打印五、设计图纸规定(1)边坡加固横剖面图(含重要工程量表)(2)锚索构造构造图(3)格构梁构造图(4)图纸应采用A3纸打印附件一:边坡地形平面图附件二:边坡剖面图边坡加固课程设计指引书一、概述本课程设计是深基坑与边坡课程中边坡某些教学配套实践教学环节,目是为了

9、让学生通过设计实践巩固课堂所学知识,熟悉并掌握边坡惯用支挡构造设计基本办法和规定,培养学生构造设计能力和分析问题、解决问题能力,初步掌握边坡和滑坡治理设计基本办法,为毕业设计和此后从事此类专业工作奠定坚实基本。工程中遇到边坡类型繁多,地质条件复杂限度差别较大,没有统一原则加固办法可供运用,每一种详细边坡病害整治工程或加固工程都会涉及到诸多方面,因而,需要综合全面考虑,充分运用所学知识,涉及其她有关课程知识,并发挥独立思考和独创精神,提出最合理加固办法。本设计以建筑边坡工程技术规范(GB50330-)为根据。设计成果应涉及:设计阐明书和施工图二、边坡稳定性分析2.1 基本规定(1)下列建筑边坡应

10、进行稳定性评价:1)选作建筑物场地自然斜坡;2)由于开挖或填筑形成、需要进行稳定性验算边坡;3)施工期浮现新不利因素边坡;4)运营期条件发生变化边坡。(2)计算沿构造面滑动稳定性时,应依照构造面形态采用平面或折线形滑面。计算土质边坡、极软岩边坡、破碎或极破碎岩质边坡稳定性时,可采用圆弧形滑面。(3)边坡稳定性计算时,对基本烈度为7度及7度以上地区永久性边坡应进行地震工况下边坡稳定性校核。(4)塌滑区无重要建(构)筑物边坡采用刚体极限平衡法和静力数值计算法计算稳定性时,滑体、条块或单元地震作用可简化为一种所用于滑体、条块或单元重心处、指向坡外(滑动方向)水安静力,其值应按下列公式计算: (1)

11、(2)式中,滑体、第i计算条块或单元单位宽度地震力(kN/m); 滑体、第i条块或计算单元单位宽度自重含坡顶建(构)筑物作用(kN/m); 边坡综合水平地震系数,由所在地区地震基本烈度按表1拟定。 (5)当边坡也许存在各种滑动面时,对各个也许滑动面均应进行稳定性计算。水平地震系数 表1地震基本烈度7度8度9度地震峰值加速度0.10g0.15g0.20g0.30g0.40g综合水平地震系数0.0250.0380.0500.0750.1002.2 边坡稳定性评价原则(1)除校核工况外,边坡稳定性状态分为稳定、基本稳定、欠稳定和不稳定四种状态,可依照边坡稳定性系数按下表拟定。边坡稳定性状态划分 表2

12、边坡稳定性系数边坡稳定性状态不稳定欠稳定基本稳定稳定 (2)边坡稳定安全系数应按下表拟定,当边坡稳定性系数不大于边坡稳定安全系数时应对边坡进行解决。边坡稳定安全系数 表3 边坡工程安全级别边坡类型与工况一级二级三级永久边坡普通工况1.351.301.25地震工况1.151.101.05暂时边坡1.251.201.15 注:1. 地震工况时,安全系数仅合用于塌滑区内无重要建(构)筑物边坡; 2. 对地质条件很复杂或破坏后果很严重边坡工程,其稳定安全系数应恰当提高。 2.3 边坡稳定性分析办法 边坡稳定性分析普通采用较为实用极限平衡办法,因而,土质边坡可采用瑞典条分法、毕肖普法进行分析。岩质边坡可

13、用单平面、双平面滑动破坏计算办法,任意滑面形状边坡,可采用不平衡力传递系数法。详细办法可参见关于教材或讲义。三、锚固工程设计计算3.1 锚杆设计基本原则(1)设计锚杆使用寿命应不不大于边坡或被服务建筑物正常使用年限,普通有效期限在两年以内工程锚杆应按暂时锚杆设计,有效期限在两年以上锚杆应按永久性锚杆进行设计。对于永久性锚杆锚固段不应设在有机质土、液限不不大于50或相对密度不大于0.3土层中。(2)当对支护构造变形量容许值规定较高、或岩层边坡施工期稳定性较差、或土层锚固性能较差、或采用了钢绞线和精轧钢筋时,宜采用预应力锚杆。但预应力作用对支承构造加载影响、对锚固地层牵引作用以及相邻构筑物不利影响

14、应控制在安全范畴之内。(3)设计锚杆必要达到所设计锚固力规定,防止边坡滑动剪断锚杆,锚杆选用钢筋或钢绞线必要满足关于国标,特别是预应力钢绞线,必要保障钢筋或钢绞线有效防腐,以避免锈蚀导致材料强度减少。3.2 锚杆设计程序对边坡锚杆加固设计一方面必要对边坡工程地质调查,在掌握地质状况基本上,对边坡破坏方式进行判断,并分析采用锚杆方案可行性和经济性,如果采用锚杆方案可行,开始计算边坡作用在支挡构造物上侧压力,依照侧压力大小和边坡实际状况选取合理锚杆型式,并拟定锚杆数量、布置形式、承载力设计值。依照承载力设计值计算锚筋截面、选取锚筋材料和数量,计算锚固段长度。如果采用预应力锚杆还要拟定预应力张拉值和

15、锁定值,最后进行外锚头和防腐构造设计并给出施工建议、实验、验收和监测规定。在边坡锚杆加固中要选取合理锚杆型式,必要结合被加固边坡详细状况,依照锚固段所处地层类型、工程特性、锚杆承载力大小、锚杆材料、长度、施工工艺等条件综合考虑进行选取。表4给出了土层、岩层中预应力和非预应力惯用锚杆类型关于参数,可供边坡锚杆加固选型使用。惯用边坡锚杆型式 表4锚杆类别锚筋选料承载力(kN)锚杆长度应力状态注浆方式锚固体形式合用条件土层锚杆钢筋(、级)45010m预应力压力灌浆二次高压灌浆持续球型、扩孔型土层锚固性较差;边坡容许变性值小钢绞线600160010m预应力同上同上同上岩层锚杆钢筋(、级)45010m预

16、应力常压灌浆压力灌浆圆柱型边坡稳定性交差钢绞线60010m预应力常压灌浆压力灌浆圆柱型同上3.3 锚杆布设规定锚杆布置原则上应依照实际地层状况以及锚杆与其她支挡构造联合使用品体状况拟定,普通有如下基本规定:(1)锚索间距应以所设计锚固力能对边坡提供最大张拉力为原则,普通状况下,锚杆水平与垂直间距宜采用36m,不得不大于1.5m,以免群锚效应发生而减少锚固力。(2)锚杆上覆地层厚度应不不大于5m,以避开车辆重复荷载影响,也避免由于采用高压注浆使上覆土层隆起。(3)锚固段与相邻基本或地下设施距离应不大于3m。(4)在施工中应考虑施工偏差而导致锚索互相影响。(5)锚杆钻孔直径除必要满足锚杆拉力设计值

17、外,钻孔内预应力钢绞线面积应不超过钻孔面积15。(6)锚杆倾角宜避开与水平向成-10+10范畴,10范畴内锚杆注浆应采用保证浆液灌注密实办法。(7)原则上预应力锚杆安设角度宜采用最优锚固角,实际采用安设角度可依照潜在滑动体实际状况和施工条件调节。最优锚固角可按下式计算。 (1)式中,最优锚固角,为预应力锚杆与水平面之间夹角(正值为仰角,负值为俯角);滑动面(软弱构造面)倾角; 滑动面摩擦角。3.4 锚杆锚固设计荷载计算对于用于滑坡治理锚杆,锚杆锚固设计荷载拟定应依照边坡推力大小和支护构造类型综合拟定。先计算边坡不平衡推力或侧压力,然后依照锚杆布置形式计算该边坡要达到稳定需要锚杆提供加固力。依照

18、加固力和锚杆数量便可拟定出每根锚杆平均承担锚固荷载大小,该荷载大小作为锚筋截面计算和锚固体设计重要根据。(1)单一滑面破坏边坡使边坡稳定安全系数达到许用值时所需施加锚固力用下式计算: (2)式中,T作用于边坡滑体上由锚索提供加固力; 作用在滑块底面上水浮托力;张拉裂缝中水压力; 锚杆与水平面之间夹角;L滑动面长度;F边坡安全系数。 图1 边坡平面破坏受力分析 图2 边坡双画面滑动受力分析(2)双滑面破坏边坡边坡达到许用安全系数值时所需加固力为: (3)式中,分别为滑块1和滑块2自重;,分别为滑块1和滑块2水压力;,分别为滑块1和滑块2粘聚力;,分别为滑块l和滑块2摩擦角;,分别为滑块1和滑块2

19、滑面长度;,分别为滑块1和滑块2滑面倾角。(3)多滑面破坏边坡多滑面破坏边坡稳定分析比较复杂,如前面所述,当前工程上大都采用传递系数法近似拟定边坡稳定性。当计算出最底部滑块不平衡推力不不大于零时,阐明边坡稳定性不能保证。若采用预应力锚杆(索)加固滑坡时,锚杆应提供锚固力可以近似地按照边坡平衡条件用下式拟定。 (4)式中,E 滑坡推力,计算推力时应考虑一定安全储备; 锚索与滑动面相交处滑动面倾角; 滑动面内摩擦角; 锚索与水平面夹角,如下倾为宜,不易不不大于45,普通为1530。3.5 锚杆轴向拉力设计值拟定式(2)、式(3)、式(4)计算得到是每延米边坡所需加固力,该加固力为一种横剖面上锚杆设

20、计总锚固力。依照边坡规模进行锚杆布置,拟定出锚杆水平间距和竖向间距后,即可计算出整个边坡加固所需锚杆数量。这样就可以用下式计算单根锚杆所需提供设计锚固力N。 (5)式中,N单根锚杆轴向设计锚固力; L边坡长度; 锚杆总根数。设计锚固力N应不大于容许锚固力,即。铁路路基支挡构造设计规范(TB10025-)中规定,对于锚固钢材容许荷载应满足表5规定。锚固钢材容许荷载 表5项目永久性锚固暂时性锚固设计荷载作用时或0.75或0.8张拉预应力时或0.85或0.85预应力锁定期或0.9或0.9注:为极限张拉荷载(kN),为屈服荷载(kN)。3.6 锚杆锚筋设计在拟定出锚杆轴向设计荷载后,需要对锚杆进行构造

21、设计,构造设计第一步就是依照锚杆轴向设计荷载计算锚杆锚筋截面,并选取合理钢筋或钢绞线配备锚筋;在配备锚筋后可由锚筋实际面积和锚筋抗拉强度原则值计算出锚杆承载力设计值,然后方能进行锚杆体和锚固体设计计算。(1)锚杆锚筋截面积计算锚杆要达到设计荷载所需锚筋截面需满足如下公式规定:普通锚筋锚杆: (6)预应力锚索锚杆: (7)式中,相应于作用原则组合时锚杆所受轴向拉力原则值;锚杆钢筋或预应力锚索截面面积; ,普通钢筋或预应力钢绞线抗拉强度设计值; 锚杆杆体抗拉安全系数,应按表6取值。锚杆杆体抗拉安全系数 表6边坡工程安全级别安全系数暂时性锚杆永久性锚杆一级1.82.2二级1.62.0三级1.41.8

22、(2)锚筋选用依照锚筋截面计算值,对锚杆进行锚筋配备,规定实际锚筋配备截面面积不不大于所需截面面积。配筋选材应依照锚固工程作用、锚杆承载力、锚杆长度、数量以及现场提供施加应力和锁定设备等因数综合考虑。对于棒式锚杆,都采用钢筋做锚筋。如果是普通非预应力锚杆,由于设计轴向力普通不大于450kN,长度最长不超过20m,因而,锚筋普通选用普通热轧钢筋;如果是预应力锚杆可选用预应力螺纹钢筋。预应力材料可分为金属材料和复合型材料。金属材料是当前国内广泛应用材料,它涉及高强钢丝、钢绞线、精轧螺纹钢筋等,其中特别以高强度低松驰钢绞线应用量最多、最广泛。复合型材料是预应力金属高强材料经深加工后产品,涉及无粘结筋

23、、环氧涂层钢绞线、钢丝等,其中无粘结筋应用量逐年增长。 对于长度较长、锚固力较大预应力锚杆应优先选用钢绞线、高强钢丝,这样不但可以减少锚杆用钢量,最大限度地减少钻孔和施加预应力工作量,还可以减少预应力损失。由于钢绞线屈服应力普通是普通钢筋近7倍,如果假定钢材弹性模量相似,它们达到屈服点延伸率钢绞线是钢筋7倍。换言之,在同等地层徐变量条件下,采用钢绞线锚杆预应力损失仅为普通钢筋1/7。钢绞线、预应力螺纹钢筋以及普通螺纹钢筋规格参数如表7、表8、表9所示。 钢绞线抗拉强度设计值、原则值(N/mm2) 表7种类直径(mm)抗拉强度设计值()屈服强度原则值()极限强度原则值()13三股8.612201

24、410172010.813201670186012.913901760196017七股9.512201540172012.713201670186015.213901760196017.812201590172021.6132016701860 预应力螺纹钢筋抗拉强度设计值、原则值(N/mm2) 表8种类直径(mm)符号抗拉强度设计值()屈服强度原则值()极限强度原则值()预应力螺纹钢筋18,25,32,40,50PSB785650785980PSB9307709301030PSB108090010801230 普通螺纹钢筋抗拉强度设计值、原则值(N/mm2) 表9种类直径(mm)抗拉强度设计

25、值()屈服强度原则值()极限强度原则值()热轧钢筋HRB335HRBF335650300335455HRB400HRBF400RRB400650360400540HRB500HRBF5006504355006303.7 锚固体设计为达到锚固力原则值,圆柱形锚杆锚固体与岩土层间接触长度,即锚固体长度应满足下式规定: (8)式中,锚固体长度;K 锚杆锚固体抗拔安全系数,按表10取值;D 锚杆锚固体(即钻孔)直径;锚固体表面与周边岩土体之间极限粘结强度原则值,它与钻孔办法、岩土性质、渗入性、抗剪强度、锚杆上覆地层厚度、注浆压力等因素关于,工程上普通由实验拟定。无实验资料时也可参照表11推荐值选用。

26、岩土锚杆锚固体抗拉安全系数 表10边坡工程安全级别安全系数暂时性锚杆永久性锚杆一级2.02.6二级1.82.4三级1.62.2 土体与锚固体间极限粘结强度原则值 表11岩土种类岩土状态(kPa)粘性土软 塑2040可 塑4050硬 塑5065坚 硬65100砂土稍密100140中密140200密实200280碎石土稍 密120160中 密160220密 实220300岩石极软岩270360软岩360760较软岩7601200较硬岩12001800硬岩18002600 注: 合用于注浆强度级别为M30。以上是按锚杆锚固体与地层粘结强度来拟定锚固力和设计有效锚固长度。然而,锚杆杆体与锚固体材料之间

27、锚固力普通高于锚固体与土层间锚固力,因而土层锚杆锚固段长度计算成果普通均为式(8)。极软岩和软质岩中锚固破坏普通发生于锚固体与岩层间,硬质岩中锚固端破坏可发生在锚杆杆体与锚固体材料之间,因而岩石锚杆锚固段长度应分别按式(8)和下式计算,取其中大值。 (9)式中,锚筋直径;n 杆体(钢筋、钢绞线)根数;钢筋与锚固砂浆间粘结强度设计值,其值取决于钢杆表面形状和水泥砂浆粘结和抗剪强度,普通应由实验拟定。当缺少实验资料时可按表12取值。 钢筋、钢绞线与砂浆之间粘结强度设计值(MPa) 表12锚杆类型水泥浆或水泥砂浆强度级别M25M30M35水泥砂浆与螺纹钢筋间粘结强度设计值2.102.402.70水泥

28、砂浆与钢绞线、高强钢丝间粘结强度设计值2.752.953.40 注: 1 当采用二根钢筋点焊成束做法时,粘结强度应乘以0.85折减系数; 2 当采用三根钢筋点焊成束做法时,粘结强度应乘0.7折减系数; 3 成束钢筋根数不应超过3根,钢筋截面总面积不应超过锚孔面积20%。当锚固段钢筋和注浆材料采用特殊设计,并经实验验证锚固效果良好时,可恰当增长锚杆钢筋用量。 永久型锚杆抗震验算时,其安全系数应按0.8折减。国内建筑边坡工程技术规范依照大量锚杆实验成果及锚固段设计安全度及构造需要,规定锚固段设计计算长度应满足如下规定:(1) 锚杆锚固段长度应按式(8)、式(9)计算,并取其中大值。同步,土层锚杆锚

29、固段长度不应不大于4m,并不适当不不大于10m;岩石锚杆锚固段长度不应不大于3m,且不适当不不大于45D和6.5m;预应力锚索不适当不不大于55D和8m.(2) 位于软质岩中预应力锚索,可依照地区经验拟定最大锚固长度。(3) 当计算锚固段长度超过构造规定长度时,应采用改进锚固段岩土体质量、压力灌浆、扩大锚固段直径、采用荷载分散型锚杆等,提高锚杆承载能力。锚杆总长度为锚固段、自由段及外锚头长度之和。锚杆自由段(张拉段)长度应依照锚杆与滑裂面和边坡坡面交点距离而定,为了有助于被锚固地层稳定性和锚固可靠性,锚杆自由段长度应为外锚头到潜在滑裂面长度;预应力锚杆自由段长度应不不大于5.0m,且应超过潜在

30、滑裂面1.5m。3.8 锚杆构造设计1.锚孔锚杆钻孔直径应保证:钻孔内锚杆钢筋面积不超过钻孔面积20%;钻孔内锚杆钢筋保护层厚度,对永久性锚杆不应不大于25mm,对暂时性锚杆不应不大于15mm。 锚孔倾角宜采用1035,并应避免对相邻构筑物产生不利影响。2.对中支架对中支架是保证张拉段锚索束体在孔中居中,从而使锚索体可被一定厚度注浆体覆盖。在设立对中支架时要符合下述规定:(l)所有锚索均应沿锚索张拉段全长设立对中支架;(2)对中支架应保证其所在位置处锚索束体注浆体覆盖层厚度不不大于10mm,永久工程不适当不大于20mm;(3)波纹管内对中支架应保证其所在位置处锚索束体注浆体覆盖层厚度不不大于5

31、mm;(4)对中支架间距普通依照锚索组装后刚度拟定,应保证两相邻对中支架中点处锚索体或波纹管注浆体覆盖层厚度不不大于5mm;(5)软弱地层中对中支架应避免陷入孔壁地层中,其接触面积应相应扩大。3. 隔离支架设立隔离支架作用是使锚固段各根钢绞线互相分离,并使锚索体居中,隔离支架设立要符合下述规定:(l)所有钢绞线构成锚索体,在锚固段均应使用隔离支架;(2)隔离支架应在保证其有效工作同步,保证注浆体能顺利通过;(3)隔离支架应具备足够刚度,当锚索受力时不容许产生过大变形;(4)隔离支架应能使钢绞线可靠分离,使每股钢绞线之间净距应不不大于5mm,且使隔离支架处锚索体注浆体厚度不不大于10mm;(5)

32、每根锚索锚固段至少应安装3个隔离支架,其间距普通由现场组装状况拟定。4. 锚头设计锚头构造构造和形状尺寸应依照锚杆设计荷载、地层条件、支挡构造和施工条件而定,并保证有足够强度和刚度,不得产生有害变形,有效地保持锚杆预应力值恒定。锚杆头部普通由台座、承压板及紧固器三某些构成(图3、图4、图5)。台座普通由钢筋混凝土或钢板构成,其中放置承压板外表面必要设计成与锚杆垂直。承压板需用高强度钢板制成,不至因锚杆预拉应力而使之变形过大,导致台座表面不均匀受力而发生破坏。紧固器又称为锚具,对于预应力钢筋锚具普遍使用是螺母。螺母尺寸应依照钢筋直径、螺纹规格和预应力大小来拟定。对于钢铰线锚具,国内惯用有JM(夹

33、片式锚详细系)系列、QM(直开缝三片式群锚体系)系列、OVM(直开缝二片式群锚体系)系列,依照使用钢铰线根数多少可分为4孔、7孔、9孔、12孔、15孔等不同型式。某些OVM锚具基本参数见表13,供设计时参照。图3 锚杆头部构造示意图((a) 钢筋混凝土,(b) 钢板)图4 大吨位锚索外锚头曲型构造图 图5 小吨位锚索外锚头典型构造1锚索孔壁;2孔口管;3墩座;4自由段注浆管; a)钢筋混凝土制作; b)钢板制作5排气管;6墩座二期混凝土;7束体;8锚板;9垫板;10承力钢筋网图6 混凝土墩最小厚度OVM锚具基本参数 表13OVM锚具钢绞线直径(mm)钢绞线根数锚垫板(mm)边长厚度内径锚板(m

34、m)直径厚度波纹管(mm)外径内径OVM15-6、715.215.76根、7根210160108135607770OVM15-1215.215.712根270210140175709790OVM15-1915.215.719根210250174217901071005. 预应力锚杆张拉与锁定荷载对于锚杆,原则上可按锚杆设计轴向力(工作荷载)作为预应力值加以锁定,但锁定荷载应视锚杆使用目和地层性状而加以调节。(1)锚杆张拉宜在锚固体强度不不大于20MPa并达到设计强度80%后进行。(2)锚杆张拉顺序应避免相近锚杆互相影响。(3)锚杆张拉控制应力不适当超过0.65倍钢筋或钢绞线强度原则值。(4)锚

35、杆进行正式张拉之前,应取0.10倍0.20倍锚杆轴向拉力值,对锚杆预张拉1次2次,使其各部位接触紧密和杆体完全平直。(5)宜进行锚杆设计预应力值1.05倍1.10倍超张拉,预应力保存值应满足设计规定;对地层及被锚固构造位移控制规定较高工程,预应力锚杆锁定值宜为锚杆轴向拉力特性值;对容许地层及被锚固构造产生一定变形工程,预应力锚杆锁定值宜为锚杆设计预应力值0.75倍0.90倍。(6)边坡坡体有明显蠕变且预应力锚杆与抗滑桩相结合,或因坡体地层松散引起变形过大时,应由张拉实验拟定锁定荷载。普通这种状况下将锁定荷载取为设计锚固力50%80%。(7)当边坡具备崩滑性时,锁定荷载可取为设计锚固力3070。

36、(8)当锚固地层有明显徐变时,可将锚杆张拉到设计拉力值1.21.3倍,然后再退到设计锚固力进行锁定,这样可以减少地层徐变量引起预应力损失。四、格构加固构造设计格构加固技术是运用浆砌块石、现浇钢筋混凝土或预制预应力混凝土进行边坡坡面防护,并运用锚杆或锚索加以固定一种边坡加固技术。格构技术普通与公路环境美化相结合,运用框格护坡,同步在框格之内种植花草可以达到极其美观效果。图7 预应力锚索与格构梁加固系统示意图格构重要作用是将边坡坡体剩余下滑力或土压力、岩石压力分派给格构结点处锚杆或锚索,然后通过锚索传递给稳定地层,从而使边坡坡体在由锚杆或锚索提供锚固力作用下处在稳定状态。格构仅仅是一种传力构造,而

37、加固抗滑力重要由格构结点处锚杆或锚索提供(见图7)。格构加固技术特别合用于坡度较陡、坡体岩土均匀且较坚硬公路边坡或公路滑坡。但应当注意,对于不同稳定性边坡应采用不同格构形式和锚固形式组合进行加固或坡面防护。例如,当边坡定性好,但因前缘表层开挖失稳浮现塌滑时,可采用浆砌块石格构护坡,并用锚杆锚固;如果边坡稳定性差,可用现浇钢筋混凝土格构加锚杆(索)进行加固;而对于稳定性差、下滑力大滑坡,可用现浇钢筋混凝土格构加预应力锚杆(索)进行加固;所有这些锚杆(索)都必要穿过滑动面并使锚固段位于稳定可靠地层中,方能起到阻滑作用。4.1 格构构造型式及布置依照格构采用材料不同,格构可分为浆砌块石格构、现浇钢筋

38、混凝土格构和预制预应力混凝土格构(又称PC格构)。当前国内在边坡工程中重要使用浆砌块石和现浇钢筋混凝土格构,格构惯用型式有:(l)方型:指顺边坡倾向和沿边坡走向设立方格状格构。格构水平间距对于浆砌块石格构应不大于3.0m,对于现浇钢筋混凝土格构应不大于5.0m。(2)菱型:沿平整边坡坡面斜向设立格构。格构间距对于浆砌块石格构应不大于3.0m,对于现浇钢筋混凝土格构应不大于5.0m。(3)人字型:按顺边坡倾向设立浆砌块石条带,沿条带之间向上设立人字型浆砌块石拱或钢筋混凝土。格构横向或水平间距对于浆砌块石格构应不大于3.0m,对于现浇钢筋混凝土格构应不大于4.5m。(4)弧型:按顺边坡倾向设立浆砌

39、块石或钢筋混凝土条带,沿条带之间向上设立弧型浆砌块石拱或钢筋混凝土。格构横向或水平间距对于浆砌块石格构应不大于3.0m,对于现浇钢筋混凝土格构应不大于4.5m。4.2 格构构造设计与计算在预应力与框架梁复合构造中,框架梁除表层固坡作用外,尚有传力作用。框架梁起到锚墩作用,由于框架梁与坡面有效接触面积大,坡体在锚索作用下变形得到限制。因而,预应力锚索框架梁内力计算时应考虑锚索对框架梁影响。对于采用格构加固高陡边坡设计,首要问题是计算锚固荷载。普通状况下,计算锚固荷载应依照边坡破坏类型拟定计算办法。对于具备持续潜在滑动面边坡,可采用前述锚杆加固力计算办法进行计算。1.格构梁上锚索力拆分对格构梁,按

40、纵、横梁之间为铰支连接假设,将框架“拆解”分开,拆分为纵梁和横梁单独进行受力分析,将锚索作用力在节点上进行纵、横两方向一次分派,为简朴起见,不考虑节点处存在微小转角和相邻荷载传递影响。锚索力分派必要满足变形协调条件和静力平衡条件。依照以上假设与办法,锚索力在节点上沿横梁、纵梁分派计算公式分别为: 中间节点 (10)边节点 (11) 式中,Pi作用在第i个结点上垂直于坡面方向上锚索分力(kN);Pix,PiyPi在结点处分派给横、纵梁上分力(kN);bx,by横、纵方向梁宽(m);Sx,Sy横、纵梁弹性特性长度(m),;EIx,EIy纵,横梁刚度(kNm2);k地基反力系数(kNm-3);若节点沿x、y方向均有外伸相似长度悬臂梁段,则荷载分派公式亦与中间结点相似。 图10 格构梁3种节点类型示意图2. 格构梁内力计算格构梁内力在不同工作阶段并不相似,计算时应分别按照张拉阶段和正常工作阶段分别计算其内力,并按最不利原则进行格构梁配筋。(1)张拉阶段地梁内力计算为简化分析,考虑最大外荷作用,采用张拉刚刚完毕时刻进行分析。以纵梁上作用3孔锚索为例,此时地梁上外力为:锚索张拉力,梁下岩土体反力,地梁自重G以及坡面摩擦力T,如图11所示。图1

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 应用文书 > 技术指导

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服