收藏 分销(赏)

高三理科数学圆锥曲线综合复习讲义.doc

上传人:w****g 文档编号:2392556 上传时间:2024-05-29 格式:DOC 页数:10 大小:936.51KB
下载 相关 举报
高三理科数学圆锥曲线综合复习讲义.doc_第1页
第1页 / 共10页
高三理科数学圆锥曲线综合复习讲义.doc_第2页
第2页 / 共10页
高三理科数学圆锥曲线综合复习讲义.doc_第3页
第3页 / 共10页
高三理科数学圆锥曲线综合复习讲义.doc_第4页
第4页 / 共10页
高三理科数学圆锥曲线综合复习讲义.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、高三理科数学圆锥曲线综合复习讲义一、基础知识【理解去记】1椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a (2a|F1F2|=2c).第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0e1)的点的轨迹(其中定点不在定直线上),即(0eb0), 参数方程为(为参数)。若焦点在y轴上,列标准方程为: (ab0)。3椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆:,a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(a, 0), (0, b), (c, 0);与

2、左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知0eb0), F1(-c, 0), F2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一点,则|PF1|=a+ex, |PF2|=a-ex.5.补充知识点:几个常用结论:1)过椭圆上一点P(x0, y0)的切线方程为:;2)斜率为k的切线方程为;3)过焦点F2(c, 0)倾斜角为的弦的长为。6双曲线的定义,第一定义:满足|PF1|-|PF2|=2a(2a0)的点P的轨迹;第二定义:到定点的距离与到定直线距离之比为常数e(1)的点的轨迹。7双曲线的方程:中心在原点,焦点在x

3、轴上的双曲线方程为,参数方程为(为参数)。焦点在y轴上的双曲线的标准方程为:。8双曲线的相关概念,中心在原点,焦点在x轴上的双曲线:(a, b0),a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a, 0), (a, 0). 左、右焦点为F1(-c,0), F2(c, 0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。9补充知识点:双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0), F2(c, 0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在

4、右支上,则|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.2) 过焦点的倾斜角为的弦长是。10抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p0),离心率e=1.11补充知识点抛物线常用结论:若P(x0, y0)为抛物线上任一点,1)焦半径|PF|=;2)过点P的切线方程为y0y=p(x+x

5、0);3)过焦点倾斜角为的弦长为。二、直线与圆锥曲线的位置关系一、知识整理:1.考点分析:此部分的解答题以直线与圆锥曲线相交占多数,并以椭圆、抛物线为载体较多。多数涉及求圆锥曲线的方程、求参数的取值范围等等。2解答直线与圆锥曲线相交问题的一般步骤:设线、设点, 联立、消元, 韦达、代入、化简。第一步:讨论直线斜率的存在性,斜率存在时设直线的方程为y=kx+b(或斜率不为零时,设x=my+a);第二步:设直线与圆锥曲线的两个交点为A(x1,y1)B(x2,y2); 第三步:联立方程组,消去y 得关于x的一元二次方程;第四步:由判别式和韦达定理列出直线与曲线相交满足的条件,第五步:把所要解决的问题

6、转化为x1+x2 、x1x2 ,然后代入、化简。3弦中点问题的特殊解法-点差法:即若已知弦AB的中点为M(xo,yo),先设两个交点为A(x1,y1),B(x2,y2);分别代入圆锥曲线的方程,得,两式相减、分解因式,再将代入其中,即可求出直线的斜率。4.弦长公式:( k为弦AB所在直线的斜率)三、高考真题练习:1.【2012高考真题新课标理8】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【答案】C【解析】设等轴双曲线方程为,抛物线的准线为,由,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以,所以实轴长,选C.2.【2012高考真题新课标理4】设是

7、椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 【答案】C【解析】因为是底角为的等腰三角形,则有,,因为,所以,,所以,即,所以,即,所以椭圆的离心率为,选C.3.【2012高考真题四川理8】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )A、 B、 C、 D、 【答案】B【解析】设抛物线方程为,则点焦点,点到该抛物线焦点的距离为, , 解得,所以.4.【2012高考真题山东理10】已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为(A) (B) (C) (D)【答案】

8、D【解析】因为椭圆的离心率为,所以,所以,即,双曲线的渐近线为,代入椭圆得,即,所以,则第一象限的交点坐标为,所以四边形的面积为,所以,所以椭圆方程为,选D.5.【2012高考真题湖南理5】已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=1【答案】A【解析】设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点P (2,1)在C 的渐近线上,即.又,C的方程为-=1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.6.【2012高考真题福建理8】已知

9、双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.5【答案】 【解析】由抛物线方程易知其焦点坐标为,又根据双曲线的几何性质可知,所以,从而可得渐进线方程为,即,所以,故选7.【2012高考真题四川理15】椭圆的左焦点为,直线与椭圆相交于点、,当的周长最大时,的面积是_。【答案】3【命题立意】本题主要考查椭圆的定义和简单几何性质、直线与圆锥曲线的位置关系、,考查推理论证能力、基本运算能力,以及数形结合思想,难度适中.【解析】当直线过右焦点时的周长最大,;将带入解得;所以.8.【2012高考真题重庆理14】过抛物线的焦点作直线交抛物线于两点,

10、若则= . 【答案】【解析】抛物线的焦点坐标为,准线方程为,设A,B的坐标分别为的,则,设,则,所以有,解得或,所以.9.【2012高考真题辽宁理15】已知P,Q为抛物线上两点,点P,Q的横坐标分别为4,2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为_。【答案】4【解析】因为点P,Q的横坐标分别为4,2,代人抛物线方程得P,Q的纵坐标分别为8,2.由所以过点P,Q的抛物线的切线的斜率分别为4,2,所以过点P,Q的抛物线的切线方程分别为联立方程组解得故点A的纵坐标为4【点评】本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题。曲线在切点处的导数即为

11、切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键。10.(2011年高考全国卷理科15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线则|AF2| = .【答案】6【解析】:,由角平分线的性质得又 11. (2011年高考四川卷理科14)双曲线P到左准线的距离是 . 答案:16解析:由双曲线第一定义,|PF1|-|PF2|=16,因|PF2|=4,故|PF1|=20,(|PF1|=-12舍去),设P到左准线的距离是d,由第二定义,得,解得.12. (2011年高考湖南卷理科5)设双曲线的渐近线方程为,则的值

12、为解析:由双曲线方程可知渐近线方程为,故可知。13.【2012高考真题浙江理21】(本小题满分15分)如图,椭圆C:(ab0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分()求椭圆C的方程;() 求ABP的面积取最大时直线l的方程【命题立意】本题主要考查椭圆的几何性质,直线与椭圆的位置关系,同时考查解析几何的基本思想方法和运算求解能力。【答案】()由题:; (1)左焦点(c,0)到点P(2,1)的距离为: (2)由(1) (2)可解得:所求椭圆C的方程为:()易得直线OP的方程:yx,设A(xA,yA),B(xB,yB),R(x0

13、,y0)其中y0x0A,B在椭圆上,设直线AB的方程为l:y(m0),代入椭圆:显然m且m0由上又有:m,|AB|点P(2,1)到直线l的距离表示为:SABPd|AB|m2|,当|m2|,即m3 或m0(舍去)时,(SABP)max此时直线l的方程y14.【2012高考真题广东理20】(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C1:的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n)使得直线:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且OAB的面积最大?若存在,求出点M的坐标及相对应的OAB的

14、面积;若不存在,请说明理由解:(1)由可得,因为,所以,即所以椭圆的方程为:设椭圆上的一动点,则 若,当时,解得 若,综合,所以椭圆的方程为(2)假设在椭圆上,存在点满足题意,则在中,所以当时,有最大值,此时,点到直线的距离 即, , 所以在椭圆上存在点,使得直线与圆相交于不同的两点、,且的面积最大,最大值为15.【2012高考真题新课标理20】(本小题满分12分)设抛物线的焦点为,准线为,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,求坐标原点到距离的比值.【答案】(1)由对称性知:是等腰直角,斜边 点到准线

15、的距离 圆的方程为 (2)由对称性设,则 点关于点对称得: 得:,直线 切点 直线坐标原点到距离的比值为.16.【2012高考真题上海理22】(4+6+6=16分)在平面直角坐标系中,已知双曲线:(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;(2)设斜率为1的直线交于、两点,若与圆相切,求证:;(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值.【答案】过点A与渐近线平行的直线方程为,,则到直线的距离为.设到直线的距离为.【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为,它的渐近线为,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 10

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服