收藏 分销(赏)

4-圆锥曲线中的定点定值问题(教师版).doc

上传人:精*** 文档编号:2390406 上传时间:2024-05-29 格式:DOC 页数:6 大小:529.04KB
下载 相关 举报
4-圆锥曲线中的定点定值问题(教师版).doc_第1页
第1页 / 共6页
4-圆锥曲线中的定点定值问题(教师版).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
(完整版)4 圆锥曲线中的定点定值问题(教师版) 第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点在直线上,过点分别作曲线的切线, 切点为、, 求证:直线恒过一定点,并求出该定点的坐标; 解:设, 整理得: 同理可得: ,又 ,。 例2、已知点是椭圆上任意一点,直线的方程为, 直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒 过一定点G,求点G的坐标。 解:直线的方程为,即 设关于直线的对称点的坐标为 则,解得 直线的斜率为 从而直线的方程为: 即 从而直线恒过定点 二、恒为定值问题 例3、已知椭圆两焦点、在轴上,短轴长为,离心率为,是椭圆在第一 象限弧上一点,且,过P作关于直线F1P对称的两条直线PA、PB分别交椭 圆于A、B两点。 (1)求P点坐标; (2)求证直线AB的斜率为定值; 解:(1)设椭圆方程为,由题意可得 ,所以椭圆的方程为 则,设 则 点在曲线上,则 从而,得,则点的坐标为。 (2)由(1)知轴,直线PA、PB斜率互为相反数, 设PB斜率为,则PB的直线方程为: 由 得 设则 同理可得,则 所以直线AB的斜率为定值。 例4、已知动直线与椭圆相交于、两点,已知点 , 求证:为定值. 解: 将代入中得 , , 所以 。 课后作业: 1。 在平面直角坐标系中,已知椭圆.如图所示,斜率为且不 过原点的直线交椭圆于,两点,线段的中点为, 射线交椭圆于点,交直线于点。 (Ⅰ)求的最小值; (Ⅱ)若∙,求证:直线过定点; 解:(Ⅰ)由题意:设直线, 由消y得:, 设A、B,AB的中点E,则由韦达定理得: =,即,, 所以中点E的坐标为, 因为O、E、D三点在同一直线上, 所以,即, 解得, 所以=,当且仅当时取等号, 即的最小值为2。 (Ⅱ)证明:由题意知:n〉0,因为直线OD的方程为, 所以由得交点G的纵坐标为, 又因为,,且∙,所以, 又由(Ⅰ)知: ,所以解得,所以直线的方程为, 即有, 令得,y=0,与实数k无关, 所以直线过定点(-1,0)。 2. 已知点为曲线上的一点, 若,是否存在垂直轴的直线 被以为直径的圆截得的弦长恒为定值?若存在,求出直线的方程;若不存在, 请说明理由. 解:设的中点为,垂直于轴的直线方程为, 以为直径的圆交于两点,的中点为. , 所以,令,则对任意满足条件的, 都有(与无关), 即为定值. 6
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服