1、(完整word)必修二空间几何体的三视图(附答案)空间几何体的三视图学习目标1。了解中心投影和平行投影.2.能画出简单空间图形的三视图.3.能识别三视图所表示的立体模型。知识点一投影的概念及分类1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫做投影面。2。投影的分类3。当图形中的直线或线段不平行于投影线时,平行投影都具有下述性质:直线或线段的平行投影仍是直线或线段;平行直线的平行投影是平行或重合的直线;平行于投影面的线段,它的投影与这条线段平行且等长;与投影面平行的平面图形,它的投影与这个图形全等;
2、在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比。知识点二三视图的概念及特征1。定义:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图;光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图,三视图是正投影。2.基本特征:一个几何体的侧视图和正视图高度一样,俯视图与正视图长度一样,侧视图与俯视图宽度一样.思考画三视图时一定要求光线与投影面垂直吗?答是。由画三视图的规则要求可知光线与投影面垂直.题型一中心投影与平行投
3、影例1下列说法中:平行投影的投影线互相平行,中心投影的投影线相交于一点;空间图形经过中心投影后,直线还是直线,但平行线可能变成了相交的直线;两条相交直线的平行投影是两条相交直线。其中正确的个数为()A。0 B。1 C。2 D.3答案B解析由平行投影和中心投影的定义可知正确;空间图形经过中心投影后,直线可能变成直线,也可能变成一个点,如当投影中心在直线上时,投影为点;平行线有可能变成相交线,如照片中由近到远物体之间的距离越来越近,最后相交于一点,不正确;两条相交直线的平行投影是两条相交直线或一条直线,不正确.跟踪训练1已知ABC,选定的投影面与ABC所在平面平行,则经过中心投影后所得的ABC与A
4、BC()A.全等 B.相似C.不相似 D。以上都不对答案B解析本题主要考查对中心投影的理解。根据题意画出图形,如图所示.由图易得,则ABCABC。题型二画空间几何体的三视图例2如图是按不同方式放置的同一个圆柱,阴影面为正面,画出其三视图。解三视图分别如图所示。跟踪训练2螺栓是棱柱和圆柱构成的组合体,如图,画出它的三视图.解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).三视图如图所示.题型三由三视图还原空间几何体例3根据以下三视图想象物体原形,并画出物体的实物草
5、图。(1) (2) 解(1)此几何体上面可以为圆柱,下面可以为圆台,所以实物草图可以如图。(2)此几何体上面可以为圆锥,下面可以为圆柱,所以实物草图可以如图。反思与感悟由三视图还原空间几何体的步骤:跟踪训练3已知如下三视图,试分析该几何体结构特征并画出物体的实物草图。解由三视图可知该几何体为四棱锥,对应空间几何体如图:数形结合思想例4某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为a的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为和b的线段,求a2b2的值。分析本题考查某几何体的一条棱长和它在三视图中的投影长的关系,这种关系比较抽象,不易理解,我们可以结合长方体的体对
6、角线在三个面上的投影来理解这个问题。解如图所示,设长方体的长、宽、高分别为m,n,k,体对角线长为,体对角线在三个相邻面上的投影长分别为a,,b.则由题意,得,,解得m1或m1(舍去),则所以(a21)(b21)6,即a2b28.解后反思本题主要是根据题意利用数形结合思想构造一个长方体,通过长方体把a,b集中在方程中求解。画出所给几何体的三视图例5画出如图所示物体的三视图。分析首先正视图与侧视图的高要相等,其次侧视图的宽与俯视图的宽一致。解该几何体的三视图如图所示:解后反思本例的侧视图中有一条看不到的棱,在绘图时应用虚线,常见错误是将此虚线误绘成实线,这一点在绘制三视图时尤其要重视.1。一条直
7、线在平面上的平行投影是()A.直线 B.点C。射线 D.直线、射线或点2。若一个几何体的正视图和侧视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是()A.圆柱 B。三棱柱 C。圆锥 D.球体3.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()4.如图所示,正三棱柱(底面是正三角形的直三棱柱)ABCA1B1C1的正视图是边长为4的正方形,则此正三棱柱的侧视图的面积为()A.8 B。4 C。2 D.165。有一个正三棱柱(俯视图为正三角形)的三视图如图所示,则这个三棱柱的高和底面边长分别为_.一、选择题1。一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B
8、.棱台 C.圆柱 D。圆台2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱 B.圆锥 C.四面体 D.三棱柱3。一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()4。在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()5。已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A。 B。1 C。 D.6。一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. C. D.2二、填空题8。如图
9、所示,桌面上放着一个半球,则它的三视图中,与其他两个视图不同的是_(填“正视图”“侧视图或“俯视图)。9.如图,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的正视图与侧视图的面积的比值为_.10。已知一几何体的三视图如下,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何体(或图形)的4个顶点,这些几何体(或图形)是_。(写出所有正确结论的编号)矩形; 不是矩形的平行四边形;有三个面为直角三角形,有一个面为等腰三角形的四面体;每个面都是等腰三角形的四面体;每个面都是直角三角形的四面体。11。一块石材表示的几
10、何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于_。三、解答题12.如图是一个几何体的正视图和俯视图。(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形(侧视图)的面积。13。一个物体由几块相同的正方体组成,其三视图如图所示,试据图回答下列问题:(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?当堂检测答案1.答案D解析当直线与投影线平行时,投影是一个点;当直线与投影线垂直时,投影是一条直线;当直线与投影线相交,但不垂直时,投影是一条射线.2。答案C解析由圆锥的三视图可知这个几何体可能是圆锥.3。答案D解析
11、从左往右看,主体的轮廓是一个长方形,长方体的对角线可以看见,且该对角线是从左下角往右上角倾斜的。4.答案A解析由正视图可知三棱柱的高为4,底面边长为4,所以底面正三角形的高为2,所以侧视图的面积为428。故选A。5.答案2,4解析由正三棱柱三视图中的数据,知三棱柱的高为2,底面边长为24.课时精练答案一、选择题1。答案D解析先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.2.答案A解析由三视图知识,知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形,故选A。3。答案C解析正视图中小长方
12、形在左上方,对应俯视图应该在左侧,排除B、D,侧视图中小长方形在右上方,排除A,故选C.4。答案D解析由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形.5。答案D解析正方体的侧视图面积为,正视图和侧视图完全相同,所以面积也为。6.答案B解析几何体俯视图的轮廓是矩形,几何体的上部的棱都是可见线段,所以C,D不正确;几何体的最上面的棱与正视图方向垂直,所以A不正确。7.答案C解析由三视图可知,该几何体是由一个正方体切掉部分后留下的一个四棱锥.如图所示,所以最长的棱长为.二、填空题8。答案俯视图解析该半球的正视图与侧视图均为半圆
13、,而俯视图是一个圆,所以俯视图与其他两个视图不同.9。答案1解析依题意得三棱锥PABC的正视图与侧视图分别是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都等于正方体的棱长,因此三棱锥PABC的正视图与侧视图的面积的比值为1。10。答案解析由三视图知该几何体是底面为正方形的长方体.故可能,如图,由图可知,不可能,都有可能.11.答案2解析由图可得该几何体为三棱柱,因为正视图、侧视图、俯视图的内切圆最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图中直角三角形的内切圆的半径r。由题意,得8r6r。解得r2。三、解答题12.解(1)由该几何体的正视图和俯视图可知该几何体可以是一个正六棱锥.(2)该几何体的侧视图如图所示:其中ABAC,ADBC,且BC的长是俯视图中正六边形对边间的距离,即BCa,AD是正棱锥的高,则ADa.所以该平面图形(侧视图)的面积为aaa2.13。解(1)该物体一共有两层,从正视图和侧视图都可以看出来。(2)该物体最高部分位于左侧第一排和第二排.(3)从侧视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个.该物体一共由7个小正方体构成.17