收藏 分销(赏)

毕业设计-中国商品房价格影响因素分析计量经济学课程论文.doc

上传人:精*** 文档编号:2170918 上传时间:2024-05-21 格式:DOC 页数:14 大小:559.50KB
下载 相关 举报
毕业设计-中国商品房价格影响因素分析计量经济学课程论文.doc_第1页
第1页 / 共14页
毕业设计-中国商品房价格影响因素分析计量经济学课程论文.doc_第2页
第2页 / 共14页
毕业设计-中国商品房价格影响因素分析计量经济学课程论文.doc_第3页
第3页 / 共14页
毕业设计-中国商品房价格影响因素分析计量经济学课程论文.doc_第4页
第4页 / 共14页
毕业设计-中国商品房价格影响因素分析计量经济学课程论文.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、计量经济学课程论文计量经济学课程论文 论文题目: 中国商品房价格影响因素分析 -基于2014年31个省市自治区的截面数据的实证分析学院名称: 经济与管理学院、中非国际商学院 学科专业: 区域经济学 目录 目录I 摘要.1一引言1二国内相关文献综述1三房地产价格驱动因素分析3四实证分析5(一)模型构建5(二)数据来源6(三)利用OLS得到回归结果6(四)模型的检验7五结论11六参考文献:11I摘 要:房价调控是关乎我国民生的政策之一,研究房地产价格上涨的原因无疑有着非常重要的意义。文章通过经济学的供求理论,对2014年我国的31个省市自治区的商品房价格波动进行了比较,并通过计量经济学的方法对这一

2、截面数据进行了实证分析,分析发现,影响房价的波动的主要因素有城镇人均可支配收入,单位土地购置费用以及单位房屋竣工价值,其中城镇人均可支配收入属于需求方面的因素,后两个因素则是属于供给方面因素。并据此提出了政府应该紧缩“地根”,以及政府应该提供更多的投资渠道以及投资产品的宏观调控政策。一引言经过十几年的发展,朝着市场化改革方向快步前进的房地产业渐渐成为我国国民经济的支柱产业,房地产业成为推动我国宏观经济的重要力量的同时,也成为决定千万家庭生活福利的重要因素。而据相关数据显示,从2002年起我国房地产价格快速上涨,致2014年,全国房屋销售均价上涨了将近1.5倍,部分一线城市甚至上涨了3倍左右。为

3、了避免房地产价格过快上涨以及由此造成的对国内宏观经济稳定的潜在危害,我国政府也不断地采取宏观调控措施抑制房地产价格过快上涨。从2002年的“土地改革”,到2005年的“国八条”、2006年的“国六条”,再到2009年的“国四条”以及以2010年的“新国十条”和2011年的“新国八条”、2013年的“试点房产税”为代表的一系列的房地产新政。这些调控政策从信贷政策、货币政策、土地政策、税收政策等各个方面入手以抑制房地产价格的过快上涨,表明我国政府不断寻求调控房地产价格的有效措施。那么,在以上所谈及的调控政策中,哪些调控政策的调控效果较好呢?影响我国房地产价格的主要因素到底有哪些呢,回答这些问题将对

4、我国房地产调控政策的走向有重要的理论和现实意义。二国内相关文献综述 因为本文研究的是中国的房地产价格影响因素,所以本文参考的都是国内的研究文献。刘晓玲的2008年后中国房价趋势分析1主要从供求角度分析房价的影响因素,里面提出一个好的观点是关于人口变化趋势对房屋需求的影响,说明的是随着我国独生子女时代的到来,双方父母的两套乃至多套房屋将在未来某个时间留给他们,假设他们留下一套自住,而把剩余的住房推向市场,那么,就会增加市场中的住房供应量。汪丽娜的房地产宏观调控后的冷静思考2和陈淼峰、陈龙乾的宏观调控对房地产价格的影响分析3主要研宄的是某些某些宏观调控政策欠佳的原因;韩国波的房地产价格的个案研宄-

5、从燕郊房价看近期房地产市场变化趋势4主要讨论了城市外围扩张的城市化进程对房价的影响; 毛广雄、谭峰的灰色系统分析应用一一预测上海房地产市场需求量变化并对其影响因素做关联度分析5和朱永升、王卫华、韩伯棠的影响房地产市场需求因素的灰色关联度分析6都是使用灰色关联度分析方法探讨GDP、价格、人均面积、人口、人均收入对销售面积的影响,其中前者采用以上海为样本数据来源,后者采用以北京市为样本数据来源;盛广恒、李新永的商品房:从成本构成看房价7详细介绍了房地产开发的各项成本,包括建筑成本、土地成本、财务成本、各种税费、经营费用、前期费用等;王学发的我国城市房价上涨的需求动因与调控对策研究8分析了人们通常把

6、房地产当作投资市场上比较容易进入又回报率较高的投资品以及不发达的房屋租赁市场是导致房地产市场上的过多需求的原因,并据此给出了相应的政策建议;贺胜兵的我国房地产价格若干影响因素的实证研宄9是一篇从比较全面的探讨有关房地产价格的影响因素的文章,同时给出了一些计量实证分析,从一定角度上弥补了关于中国房地产市场研宄多理论少实证的不足,但是这篇文章在讨论影响因素时,都是在说某单个因素对房价的影响,计量模型也基本上是一元回归模型;陈婕、路静、高鹏、董纪昌的人民币汇率波动与我国房价关系的实证分析10分析了汇率影响房价的机制,利用人民币实际有效汇率、房地产价格指数和银行同业拆借利率共30组数据(2005,07

7、2007,12)建立了向量自回归模型(VAR),并使用协整、Granger因果检验,脉冲响应分析对人民币汇率波动与我国房地产价格之间的关系进行实证检验;崔承颖的北京商品房房价影响因素的实证分析11以商品房销售价格、房地产开发投资资金中国内贷款的绝对数、商品房梭工房屋造价、城镇人均可支配收入、房产商的市场势力为自变量,研宄这些因素对北京市房价的影响;邱雅的地区商品房价格的计量分析12以地区商品房平均销售价格为被解释变量,以城镇居民年人均可支配收入、城镇人均施工面积(即房地产幵发企业施工面积/城镇人口数)、房地产开发企业单位数和房地产投资比重(即房地产投资开发额占全社会固定资产投资的比重)这四个变

8、量作为解释变量,来建立地区商品房价格模型;马丽妞的关于杭州市房价走势的探讨13以本地生产总值、总人口、本年投资完成额、施工面积、城市人均可支配收入为自变量,研究它们对房价的影响;原源的货币、利率、汇率对房价影响的实证分析14通过应用计量OLS方法对我国房地产销售价格与货币供应量、利率和汇率等变量加以回归分析,认为货币供应量上升、低利率和预期本币汇率上升都是促进房价上升的重要因素;党冰瑜的中国商品房价格影响因素探究一-基于全国30个省市的实证分析15以人口密度、城乡居民储蓄存款、房地产投资额三个变量为自变量,研宄它们对城乡平均住宅价格的影响。三房地产价格驱动因素分析中国房地产为何能持续高速上涨,

9、其驱动因素包括供应和需求两个方面。从需求的角度方面来看,影响商品房消费和投资或投机需求的因素包括城镇人口、城镇投资、居民可支配收入、利率、居民消费价格指数(CPI)、税收政策、流动性、GDP、心理预期等因素。而在供给方面看来,包括商品房开发成本和完工数量及结构等因素,其中,商品房开发成本又包括土地、建筑材料、人工工资、资金利息以及相关税费等因素。供应和需求决定价格,供过于求,房地产价格下降;供不应求,房地产价格将上升。1999年商品房竣工面积为19783.57万平方米,2014年增长到92619.9万平方米,增长了约368.17%。1999年的商品房销售面积为14556.53万平方米,2014

10、年增长到了109366.75,增长了651.32%,从近十几年来的情况分析看来,需求的增长速度完全超过供给的增长速度,因此供给与需求关系决定房价上涨这一必然趋势。在供应和需求一定的情况下,成本的上涨将推动房地产价格的上涨。土地和建筑材料作为房地产开发成本的主要组成部分,其价格的变化将直接影响到房地产开发成本。由于土地资源的有限性和稀缺性, 以及中国土地所有权的公共性,土地的供应量对价格是无弹性的,因此,随着中国经济的快速发展、城镇化水平的提高、住房需求的增加,必然激发土地需求和土地价格的不断上涨。1999年至2014年土地环比价格指数最低为130, 最高为13213, 这说明土地平均价格在不断

11、攀升。一线城市土地价格更是一路狂涨,北京、上海、深圳、南京、成都、武汉、杭州、宁波等城市的地王纪录被一次又一次刷新。土地价格的上涨推高了商品房开发的土地成本。在中国公共基础设施投入不断增加,房地产行业不断扩张与发展的背景下,市场对钢材、水泥等建筑材料的需求不断增加。虽然1999年至2003年建筑材料价格逐年小幅回落,但是,2004年至2014年,建筑材料价格却逐年上升,环比价格指数最低为100.17,最高为112.10。从影响房地产开发成本的主要因素土地和建筑材料价格来看,房地产开发成本在不断提高是客观的。利率作为影响开发商和购房者资金成本的因素,对商品房的供应和需求都会产生一定的影响。从开发

12、商来看,利率上调,资金成本上升,开发成本上升,开发资金收紧,将抑制开发商的积极性,降低商品房的供应量;利率下调,资金成本下降,开发成本下降,开发资金宽松,将激发开发商的积极性,提高商品房的供应量。从购房者来看, 利率上调,购房资金成本上升,还贷压力加大,抑制商品房需求;利率下调,购房资金成本下降,还贷压力减轻,刺激商品房需求。利率对房地产价格的影响取决于利率变化对房地产供应与需求的影响程度。随着中国经济的发展,城镇化水平的提高,城镇人口和城镇投资在不断增加。1999年至2014年,中国的GDP增长率最低为7.16%, 最高为13%,始终保持快速增长势头。GDP增长率的变化趋势预示经济发展的未来

13、前景,影响消费者和投资者的心理预期,从而影响商品房的需求。GDP增长率不断提高,预示经济进入繁荣期,失业率下降、居民收入看涨,购买力增强,商品房需求增加,房价上涨。城镇人口从1999年的43748万人增长到2014年的69079万人, 增长了57.9%, 城镇人口的增加将提升商品房的需求量。居民可支配收入是反映居民购买力的重要指标, 流动性是反映社会购买力的重要指标,因此,一定时期内居民可支配收入和流动性指标的大小决定了居民和社会的购买力。购买力越强,房价上涨的可能性越大;购买力越弱,房价下跌的可能性越大。1999年至2014年城镇居民可支配收入从5854元上升到21809.78元,增长了27

14、2.56%。城镇居民可支配收入高速增长提升了居民和社会的购买力,这也助推了商品房价格的上涨。从资产定价理论来看,房地产价格取决于房地产未来收益的现值, 而房地产未来收益的大小又取决于购房者的预期,乐观预期会高估未来收益,悲观预期会低估未来收益,因此,预期会影响房地产的价格。在宏观经济持续增长、城镇化水平将不断提高的条件下, 购房者的乐观预期会得到不断证实而被强化,此时,预期因素会导致房地产价格上涨。相反,如果购房者的乐观预期落空,预期可能会由乐观转向悲观,预期因素会导致房地产价格下跌。税收因素也是影响房地产价格的重要因素,如果对房地产开发商和购房者进行不对称征税或免税,那么税收因素的变化必然打

15、破原来的市场均衡状态,导致房地产价格发生变化。正因如此,税收政策是政府调节房地产市场的重要手段。四实证分析(一)模型构建房地产价格表现为商品房销售价格、土地购置价格、房屋出租价格和物业管理价格等不同形式,根据研究需要,本文关注的是商品房销售价格和土地购置价格,土地作为商品房开发要素之一,其价格将会以成本的形式反映在商品房销售价格中。因此,本文将商品房销售价格作为因变量,将单位土地购置费用作为自变量。考虑到数据搜集的局限性和影响因素的替代性和复杂性,我们选择商品房平均销售价格作为因变量,从影响商品房供给的角度选择单位商品房竣工价值、土地购置费用、建筑材料价格指数等因素作为自变量;从影响商品房需求

16、的角度选择城镇人口、国内生产总值、城镇居民可支配收入作为自变量,构建模型如下(由于本文的数据选择还比较平稳,故未做取对数的修正):PRE=0+1GDP +2RI +3SRE +4LP+5AMP +6TP +EPRE:商品房平均销售价格;SRE:单位房屋竣工价值; LP:单位土地购置费用;AMP:建筑材料价格指数; TP:城镇人口;GDP:国内生产总值; RI:城镇居民可支配收入; E:残差项(二)数据来源注:表中单位土地购置费用和单位房屋竣工价值由于不能直接取得,是通过土地购置费用除以土地成交面积得到,单位为(万元每平方米),而单位房屋竣工价值则是通过房屋竣工价值除以本年竣工房屋面积得到,单位

17、为万元每平方米。资料来源 2014年中国统计年鉴(三)利用OLS得到回归结果Dependent Variable: PREMethod: Least SquaresDate: 06/03/15 Time: 12:10Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-StatisticProb.C-22425.3113015.14-1.7230170.0977RI0.3150910.0762684.1313600.0004SRE14482.704163.2303.4787170.0019LP0.3069700.

18、0532865.7608580.0000AMP163.4194121.49901.3450270.1912GDP-0.0983650.054246-1.8133240.0823TP0.5196540.4336051.1984500.2424R-squared0.944919Mean dependent var5606.710Adjusted R-squared0.931149S.D. dependent var3270.032S.E. of regression858.0389Akaike info criterion16.54286Sum squared resid17669537Schwa

19、rz criterion16.86666Log likelihood-249.4143Hannan-Quinn criter.16.64841F-statistic68.62064Durbin-Watson stat2.626676Prob(F-statistic)0.000000由此可得回归方程 PRE=-22425.31-0.098365GDP +0.315091RI +14482.70SRE +0.306970LP+163.4194AMP +0.519654TP +ER2=0.944919 F=68.62064 DW=2.626676(四)模型的检验1.经济意义的检验:从回归模型中可以看

20、出,地区生产总值每增加一个单位,商业住房价格平均减少0.098365个单位,与理论不符,可能存在多重共线性。2.统计检验 拟合优度检验:=0.944919拟合程度还可以,被解释变量的94%可以用解释变量解释 F检验:伴随概率为0.000000小于0.05,拒绝原假设所有变量系数都为零的假设,即1,2,3,4,5,6 不全为零,六个解释变量对商品房平均住房价格的线性关系在95%的置信水平下显著成立。 t检验:RI,SRE,LP,AMP,GDP,TP的t统计量的伴随概率分别为0.0004 ,0.0019,0.0000,0.1912,0.0823和0.2424 ,可知,解释变量AMP,GDP,TP没

21、有通过t检验,即这三个因素对住房价格的影响不显著。3多重共线性检验:3.1利用EVIEWS 6.0得到相关系数表AMPLPRISRETPGDPAMP1.0000000.2334220.4050830.0646770.2862290.337572LP0.2334221.0000000.6575620.2480560.1043350.178719RI0.4050830.6575621.0000000.6515230.3634970.501880SRE0.0646770.2480560.6515231.000000-0.0092910.101929TP0.2862290.1043350.363497

22、-0.0092911.0000000.960749GDP0.3375720.1787190.5018800.1019290.9607491.000000从表中看到变量之间相关系数并不是很高,除了个别,如GDP指标和城镇人口之间的相关系数却高达0.960749,但是,在之前的经济检验中已经将gdp这个指标剔除出去了,所以关于与gdp相关的系数较高的就不用考虑了,除了这些还有一个就是单位土地购置费用和城镇人均收入之间的相关系数也达到了0.657562,说明变量之间仍然有存在共线性的可能。3.2多重共线性的修正首先,分别做PRE 对RI,LP,SRE,TP,AMP的一元回归得如下表格 注:此处的回归

23、结果都在底稿中(eq01ri-eq05tp)由此可以看出几个一元回归中拟合优度相对较好的是第一组,PRE与RI之间的拟合优度最好,其中引入RI的判定系数最大,应选第一个式子为初始的回归模型。由上述简单的一元回归可以看出PRE对于RI的判定系数最大,故由RI为最初的解释变量逐渐引入其他四个解释变量来寻找最佳的回归方程。故可得如下表格注:此处的所有回归结果都在底稿中(eq01-eq10)由表中可以看出拟合优度最好的是最后一组,即PRE RI LP SRE TP AMP,但是其AMP并没有达到2以上,所以没有通过t检验,同时tp(城镇人口)越多的话,也就是说需求相对来说会大一点,那么放假应该会更高,

24、但是在上表中发现其系数为-0.23257,故应该将AMP,和TP两个解释变量去掉。所以目前为止解释变量只剩下三个,故在上表13-18行中的三组数据中选择,可以看到PRE RI LP SRE 这组的拟合优度是相对来说最高的,并且其他几个解释变量的t值都较高,都能通过t检验,表明这些变量对于被解释变量具有显著性影响,而D.W也能通过相关性检验,故得到经过修正后的模型为 PRE=C +1RI +2SRE +3LP +E再次经过回归得到回归结果如下Dependent Variable: PREMethod: Least SquaresDate: 06/03/15 Time: 20:52Sample:

25、1 31Included observations: 31VariableCoefficientStd. Errort-StatisticProb.C-3928.661820.2224-4.7897510.0001RI0.2232650.0570993.9101410.0006LP0.3497870.0531066.5866110.0000SRE16922.893904.6784.3340040.0002R-squared0.925794Mean dependent var5606.710Adjusted R-squared0.917549S.D. dependent var3270.032S

26、.E. of regression938.9686Akaike info criterion16.64736Sum squared resid23804875Schwarz criterion16.83239Log likelihood-254.0340Hannan-Quinn criter.16.70767F-statistic112.2835Durbin-Watson stat2.178367Prob(F-statistic)0.000000由表可以看出其DW值也较高,故不存在序列相关性。4异方差性检验通过eviews软件的white检验得到如下结果Heteroskedasticity T

27、est: WhiteF-statistic3.471759Prob. F(9,21)0.0090Obs*R-squared18.53968Prob. Chi-Square(9)0.0294Scaled explained SS24.04210Prob. Chi-Square(9)0.0042Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/03/15 Time: 22:17Sample: 1 31Included observations: 31VariableCoefficientStd. Errort

28、-StatisticProb.C-7229201.7310058.-0.9889390.3340RI883.2745880.99291.0025900.3275RI20.0397230.0411400.9655580.3453RI*LP-0.0777970.111862-0.6954760.4944RI*SRE-9981.5893789.256-2.6341820.0155LP-52.547921277.898-0.0411210.9676LP20.0307250.0419060.7331850.4716LP*SRE6156.3188110.9970.7590090.4563SRE-18055

29、65739397137-0.4582990.6514SRE24.59E+081.17E+083.9303480.0008R-squared0.598054Mean dependent var767899.2Adjusted R-squared0.425792S.D. dependent var1443353.S.E. of regression1093723.Akaike info criterion30.90377Sum squared resid2.51E+13Schwarz criterion31.36635Log likelihood-469.0084Hannan-Quinn crit

30、er.31.05456F-statistic3.471759Durbin-Watson stat1.944608Prob(F-statistic)0.008973得到概率都较小,故不存在异方差性。五结论本文通过对不同地区的商品房价格变动的比较,并从影响价格的需求和供给方面等因素进行了分析,认为:(1)在各供给因素中,土地的购置费用和房屋竣工价值的变动对商品房价格的变动有较大的正的影响。因此,紧缩“地根”可以很好地从供给链上控制住商品房价格的波动。(2)在需求因素中,城镇人均可支配收入则对商品房价格波动具有正的影响。因此,随着人民生活水平的提高,中国这个市场应该给百姓提供更宽的投资渠道,防止大量

31、的流动资金进入到房地产这个普遍被认为最好的保值产品,从而抑制住房价的波动。六参考文献:1刘晓玲.2008年后中国房价趋势分析fl.华商,2008(3):29-302汪利娜.房地产宏观调控后的冷静思考J.中国房地产金融,2004(12):6-103陈淼峰,陈龙乾.宏观调控对房地产价格的影响分析J.经济学家,2005(2):120-12】4韩国波.房地产价格的个案研宂-从燕郊房价看近期房地产市场变化趋势fl.华北科技学院学报,2004,1 (2):101-1025毛广雄,谭峰.灰色系统分析应用-预测上海房地产市场需求量变化并对其影响因素做关联度分析J.数学的实践与认识,2005,35(2):32-

32、366朱永升,王卫华,韩伯棠.影响房地产市场需求因素的灰色关联度分析J.北京理工大学学报,2002,22(6):782-7857盛广恒.商品房:从成本构成看房价J.经济论坛,2004(5):136-1378王学发.我国城市房价上涨的需求动因与调控对策研究J.价格理论与实践,2007(4):41-429贺胜兵.我国房地产价格若干影响因素的实证研宂D:华中师范大学,200610陈婕,路静,高鹏等.人民币汇率波动与我国房价关系的实证分析J.数学的实践与认识,2009,39 (13) : 73-7911崔承颖.北京商品房价影响因素的实证分析J.生产力研宄,2011(9) : 78-80,13212邱雅.地区商品房价格的计量分析J.北京工商大学学报(社会科学版),2009,24(6):16-2013马丽妞.关于杭州市房价走势的探讨J.知识经济,2011(15):6614原源.货币、利率、汇率对房价影响的实证分析J.山西财经大学学报(高等教育版),2009,12(2):93-9615党冰瑜.中国商品房价格影响因素探究一一基于全国30个省市的实证分析J.致富时代(下半月),2011(6):19212

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服